Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) cách khác:
\(pt\Leftrightarrow11-x-4\sqrt{x+3}-2\sqrt{3-2x}=0\)
\(\Leftrightarrow3-2x-2\sqrt{3-2x}+1+x+3-4\sqrt{x+3}+4=0\)
\(\Leftrightarrow\left(\sqrt{3-2x}-1\right)^2+\left(\sqrt{x+3}-2\right)^2=0\)
\(\Leftrightarrow\sqrt{3-2x}-1=\sqrt{x+3}-2=0\)
\(\Leftrightarrow x=1\)
1/\(\sqrt{24-x^2}-\sqrt{8-x^2}=2\)
\(\Rightarrow2A=\left(\sqrt{24-x^2}+\sqrt{8-x^2}\right)\left(\sqrt{24-x^2}-\sqrt{8-x^2}\right)\)
\(\Leftrightarrow2A=16\Rightarrow A=8\)
2/ ĐKXĐ : \(x\ge5\)
\(\sqrt{x-2}+\sqrt{x-5}=\sqrt{x+3}\)
\(\Rightarrow\left(\sqrt{x-2}+\sqrt{x-5}\right)^2=x+3\)
\(\Leftrightarrow2x+2\sqrt{x-2}.\sqrt{x-5}-7=x+3\)
\(\Rightarrow2\sqrt{x-2}.\sqrt{x-5}=10-x\)
\(\Leftrightarrow4\left(x-2\right)\left(x-5\right)=x^2-20x+100\)
\(\Leftrightarrow3x^2-8x-60=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=-\frac{10}{3}\end{cases}}\)
Vì \(x\ge5\) nên x = 6 thỏa mãn đề bài.
Cộng 2 phương trình lại
VT có:\(\sqrt{x}+\sqrt{32-x}\le8;\sqrt[4]{x}+\sqrt[4]{32-x}\le4\) nên VT\(\le\)12
VP có:\(y^2-6y+21=\left(y-3\right)^2+12\ge12\)
Nghiệm \(x=16;y=3\)
điều kiện: 0=<x =< 32
hệ đã cho tương đương với: \(\hept{\begin{cases}\left(\sqrt{x}+\sqrt{32-x}\right)+\left(\sqrt[4]{x}+\sqrt[4]{32-x}\right)=y^2-6y+21\\\sqrt{x}+\sqrt[4]{32-x}=y^2-3\end{cases}}\)
theo bất đẳng thức Bunhiacopsky ta có:
\(\left(\sqrt{x}+\sqrt{32-x}\right)^2\le\left(1^2+1^2\right)\left(x+32-x\right)=64\)
\(\Rightarrow\sqrt{x}+\sqrt{32-x}\le8\)
\(\left(\sqrt[4]{x}+\sqrt[4]{32-x}\right)^4\le\left[2\left(\sqrt{x}+\sqrt{32-x}\right)\right]^2\le256\Rightarrow\sqrt[4]{x}+\sqrt[4]{32-x}\le4\)
\(\Rightarrow\left(\sqrt{x}+\sqrt{32-x}\right)+\left(\sqrt[4]{x}+\sqrt[4]{32-x}\right)\le12\)
mặt khác \(y^2-6y+21=\left(y-3\right)^2+12\ge12\)
đẳng thức xảy ra khi x=16 và y=3 (tm)
\(8\sqrt{3x^2-x+5}=24\)
Bình phương 2 vế lên, ta có:
\(\Leftrightarrow64\left(3x^2-x+5\right)=576\)
\(\Leftrightarrow192x^2-64x+320=576\)
\(\Leftrightarrow192x^2-64x+320-576=0\)
\(\Leftrightarrow192x^2-64x-256=0\)
\(\Leftrightarrow64\left(3x^2-x-4\right)=0\)
\(\Leftrightarrow64\left(3x^2+3x-4x-4\right)=0\)
\(\Leftrightarrow64\left[3x\left(x+1\right)-4\left(x+1\right)\right]=0\)
\(\Leftrightarrow64\left(x+1\right)-\left(3x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\3x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{4}{3}\end{cases}}\)
Vậy nghiệm phương trình là: \(\left\{-1;\frac{4}{3}\right\}\)
ĐK x bất kì
\(\sqrt{x^2+24}=24-x^4\)
\(\Leftrightarrow x^2+24=576-48x^4+x^8\)
\(\Leftrightarrow x^8-48x^4-x^2+552=0\)
Giải ra là tìm được x
Ha Ha.. Phương trình Bậc 8 mình chưa làm bao giờ haha!!