Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) (5x-4)(4x+6)=0
\(\Leftrightarrow\orbr{\begin{cases}5x-4=0\\4x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=4\\4x=-6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{2}\end{cases}}}\)
b) (x-5)(3-2x)(3x+4)=0
<=> x-5=0 hoặc 3-2x=0 hoặc 3x+4=0
<=> x=5 hoặc x=\(\frac{3}{2}\)hoặc x=\(\frac{-4}{3}\)
c) (2x+1)(x2+2)=0
=> 2x+1=0 (vì x2+2>0)
=> x=\(\frac{-1}{2}\)
bài 1:
a) (5x - 4)(4x + 6) = 0
<=> 5x - 4 = 0 hoặc 4x + 6 = 0
<=> 5x = 0 + 4 hoặc 4x = 0 - 6
<=> 5x = 4 hoặc 4x = -6
<=> x = 4/5 hoặc x = -6/4 = -3/2
b) (x - 5)(3 - 2x)(3x + 4) = 0
<=> x - 5 = 0 hoặc 3 - 2x = 0 hoặc 3x + 4 = 0
<=> x = 0 + 5 hoặc -2x = 0 - 3 hoặc 3x = 0 - 4
<=> x = 5 hoặc -2x = -3 hoặc 3x = -4
<=> x = 5 hoặc x = 3/2 hoặc x = 4/3
c) (2x + 1)(x^2 + 2) = 0
vì x^2 + 2 > 0 nên:
<=> 2x + 1 = 0
<=> 2x = 0 - 1
<=> 2x = -1
<=> x = -1/2
bài 2:
a) (2x + 7)^2 = 9(x + 2)^2
<=> 4x^2 + 28x + 49 = 9x^2 + 36x + 36
<=> 4x^2 + 28x + 49 - 9x^2 - 36x - 36 = 0
<=> -5x^2 - 8x + 13 = 0
<=> (-5x - 13)(x - 1) = 0
<=> 5x + 13 = 0 hoặc x - 1 = 0
<=> 5x = 0 - 13 hoặc x = 0 + 1
<=> 5x = -13 hoặc x = 1
<=> x = -13/5 hoặc x = 1
b) (x^2 - 1)(x + 2)(x - 3) = (x - 1)(x^2 - 4)(x + 5)
<=> x^4 - x^3 - 7x^2 + x + 6 = x^4 + 4x^3 - 9x^2 - 16x + 20
<=> x^4 - x^3 - 7x^2 + x + 6 - x^4 - 4x^3 + 9x^2 + 16x - 20 = 0
<=> -5x^3 - 2x^2 + 17x - 14 = 0
<=> (-x + 1)(x + 2)(5x - 7) = 0
<=> x - 1 = 0 hoặc x + 2 = 0 hoặc 5x - 7 = 0
<=> x = 0 + 1 hoặc x = 0 - 2 hoặc 5x = 0 + 7
<=> x = 1 hoặc x = -2 hoặc 5x = 7
<=> x = 1 hoặc x = -2 hoặc x = 7/5
ọi phương trình là A
A <=> 4x^6 + 4x^5 + 4x^4 + 4x^3 + 4x^2 + 4x + 3 + 1 = 0
<=> (4x^6 + 4x^5 + x^4) + (2x^4 + 4x^3 + 2x^2) + (2x^2 + 4x + 2) + x^4 + 2 = 0
<=> [2.(2x^3 + x^2)^2 + 2.(√2.x^2 + √2 . x)^2 + 2.(x+1)^2 + x^4] + 2 = 0
Xét tổng các số hạng trong ngoặc vuông, các số hạng đều có thừa số 2>0, thừa số còn lại là bình phương của 1 số sẽ > 0, còn số hạng ngoài ngoặc (số 2) hiển nhiên > 0. Từ đây suy ra phương trình A vô nghiệm.
Còn cách nữa chứng minh phương trình trên vô nghiệm. Nhân cả 2 vế với x-1 rồi thu gọn, ta có phương trình: x^7 - 1 = 0 <=> x = 1.
Ta thấy x = 1 không là nghiệm của phương trình A, vậy ta có phương trình A vô nghiệm.
(Bài tính thì theo bài của bạn, còn phần chứng minh năm ở bài 290, sách Nâng cao và phát triển toán 8 tập 2, trang 15)
P/S: Đình Huy ơi, chỗ (x + 1/x)^3 - 3.x.1/x.(x + 1/x) hình như phải là (x + 1/x)^3 - 3.x.1/x.(x - 1/x) chứ nhỉ?
cách đơn giản hơn nhé.
Đặt \(A=x^6+x^5+x^4+x^3+x^2+x+1=0\)
\(\Leftrightarrow\)\(x^5\left(x+1\right)+x^3\left(x+1\right)+x\left(x+1\right)+1=0\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(x^5+x^3+x\right)+1=0\)
\(\Leftrightarrow\)\(x\left(x+1\right)\left(x^4+x^2+1\right)+1=0\)
Ta có: \(x^4+x^2+1=\left(x^2+\frac{1}{2}\right)+\frac{3}{4}>0\) \(\forall x\)
Nếu \(x\ge0\)thì \(x+1>0\)\(\Rightarrow\)\(x\left(x+1\right)\left(x^4+x^2+1\right)\ge0\)\(\Rightarrow\)\(A>1\)
Nếu \(x=-1\) thì \(x+1=0\)\(\Rightarrow\) \(A=1\)
Nếu \(x< -1\) thì \(x+1< 0\) \(\Rightarrow\) \(A>0\)
Vậy pt vô nghiệm
P/s: sai đâu m.n chỉ cho mk nhé
\(x^4+\left(x+1\right)\left(5x^2-6x-6\right)=0\)
\(\Leftrightarrow x^4+5x^3-x^2-12x-6=0\)
\(\Leftrightarrow x^4-x^3+6x^3-x^2-6x^2+6x^2\)
\(-6x-6x-6=0\)
\(\Leftrightarrow\left(x^4-x^3-x^2\right)+\left(6x^3-6x^2-6x\right)+\)
\(\left(6x^2-6x-6\right)=0\)
\(\Leftrightarrow x^2\left(x^2-x-1\right)+6x\left(x^2-x-1\right)+\)
\(6\left(x^2-x-1\right)=0\)
\(\Leftrightarrow\left(x^2+6x+6\right)\left(x^2-x-1\right)=0\)
\(TH1:x^2+6x+6=0\)
Ta có: \(\Delta=6^2-4.6=12\sqrt{\Delta}=\sqrt{12}\)
pt có 2 nghiệm:
\(x_1=\frac{-6+\sqrt{12}}{2}=-3+\sqrt{3}\)
\(x_2=\frac{-6-\sqrt{12}}{2}=-3-\sqrt{3}\)
\(TH2:x^2-x-1=0\)
Ta có: \(\Delta=1^2+4.1=5,\sqrt{\Delta}=\sqrt{5}\)
pt có 2 nghiệm:
\(x_1=\frac{1+\sqrt{5}}{2}\)và \(x_2=\frac{1-\sqrt{5}}{2}\)
Vậy pt có 4 nghiệm \(x_1=\frac{-6+\sqrt{12}}{2}=-3+\sqrt{3}\);\(x_2=\frac{-6-\sqrt{12}}{2}=-3-\sqrt{3}\);
\(x_3=\frac{1+\sqrt{5}}{2}\);\(x_4=\frac{1-\sqrt{5}}{2}\)
Làm tốt rồi nhưng mà lớp 8 chưa học cách giải pt bậc 2 \(\Delta\). Thì chúng ta có thể:
VD TH1: \(x^2+6x+6=0\)
<=> \(x^2+6x+9-9+6=0\)
<=> \(\left(x+3\right)^2=3\)
<=> \(\orbr{\begin{cases}x+3=\sqrt{3}\\x+3=-\sqrt{3}\end{cases}}\)<=> \(\orbr{\begin{cases}x=-3+\sqrt{3}\\x=-3-\sqrt{3}\end{cases}}\)
tương tự Th2.
nhân cả 2 vế của pt với (x-1)
pt đã cho tương đương với
(x-1)(x^6+x^5+x^4+x^3+x^2+x+1)=0
<=>x^7-1=0<=>x^7=1<=>x=1
Nhưng x=1 ko thoả mãn pt đã cho
Vậy pt vô nghiệm
\(\text{a) (5x+2)(x-7)=0}\)
\(\Leftrightarrow\orbr{\begin{cases}5x+2=0\\x-7=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{5}\\x=7\end{cases}}\)
Vậy ...
#Thảo Vy#
a) ( 4x - 1 ) (x - 3) - ( x - 3 ) ( 5x + 2 ) = 0
<=> (x - 3)(4x - 1 - 5x - 2) = 0
<=> (x - 3)(-x - 3) = 0
<=> x = 3 hoặc x = -3
b) ( x + 3 ) ( x - 5 ) + ( x + 3 ) ( 3x - 4) = 0
<=> (x + 3)(x - 5 + 3x - 4) = 0
<=> (x + 3)(4x - 9) = 0
<=> x = -3 hoặc x = 9/4
c) ( x + 6 ) ( 3x - 1 )+ x2 - 36 = 0
<=> 3x^2 + 17x - 6 + x^2 - 36 = 0
<=> 4x^2 + 17x - 42 = 0
<=> 4x^2 + 24x - 7x - 42 = 0
<=> 4x(x + 6) - 7(x + 6) = 0
<=> (4x - 7)(x + 6) = 0
<=> x = -6 hoặc x = 7/4
d) ( x + 4 ) ( 5x + 9 ) - x2 + 16 = 0
<=> 5x^2 + 29x + 36 - x^2 + 16 = 0
<=> 4x^2 + 29x + 52 = 0
<=> 4x^2 + 16x + 13x + 42 = 0
<=> 4x(x + 4) + 13(x + 4) = 0
<=> (4x + 13)(x + 4) = 0
<=> x = -13/4 và x = -4
dat x+1/x=k.Ta co: x2+1/x2=k2-2,thay vao phuong trinh ta duoc:k2-2-4k+6=0\(\Leftrightarrow\)k2-4k+4=0\(\Leftrightarrow\)(k-2)2=0\(\Leftrightarrow\)k-2=0\(\Leftrightarrow\)k=2.Suy ra:x+1/x=2\(\Leftrightarrow\)x2+1=2x\(\Leftrightarrow\)x2-2x+1=0\(\Leftrightarrow\)(x-1)2=0\(\Leftrightarrow\)x-1=0\(\Leftrightarrow\)x=1.Vay phuong trinh tren co nghiem la x=1