Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x-1)(2x^2-8)=0
\(\Leftrightarrow\left(x-1\right)\left(2x^2-8\right)=0\\ \left(2x^3-8x-2x^2+8\right)=0\)
\(\Leftrightarrow2x\left(x-1\right)-8\left(x-1\right)=0\)
\(\Leftrightarrow x=1;x=\dfrac{8}{2}\)
3x^2-8x+5=0
áp dụng công thức bậc 2 ta có:
\(x=\dfrac{-\left(-8\right)\pm\sqrt{\left(-8\right)^2-4.3.5}}{2.3}\)
\(\Rightarrow x=\dfrac{5}{3};x=1\)
(7x-1).2x-7x+1=0
\(\Leftrightarrow\left(7x-1\right)\left(2x-1\right)=0\)
\(\Leftrightarrow x=\dfrac{1}{7};x=\dfrac{1}{2}\)
\(\left(x^2-1\right)^2=4x+1\)
\(\left(x^2-1\right)\left(x^2-1\right)=4x+1\)
\(x^4-x^2-x^2+1=4x+1\)
\(x^4+1-4x-1=0\)
\(x^4-4x=0\)
\(x\left(x^3-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^3=4\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\sqrt[3]{4}\end{cases}}\)
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\left(x\ne-4;-5;-6;-7;-8\right)\)
\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{x}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Rightarrow x^2+11x+28=54\)
\(\Leftrightarrow x^2+11x-26=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+13=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-13\left(tm\right)\end{cases}}}\)
vậy x=2; x=-13
Bài làm:
đkxđ: \(x\ne\left\{-4;-5;-6;-7\right\}\)
Ta có: \(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow x^2+11x+28=54\)
\(\Leftrightarrow x^2+11x-26=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+13=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=-13\end{cases}}\)
Vậy tập nghiệm của PT \(S=\left\{-13;2\right\}\)
\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\left(đk:x\ne0,x\ne2\right)\)
\(\Leftrightarrow\dfrac{\left(x+2\right)x-2}{x\left(x-2\right)}=\dfrac{x^2-2x}{x\left(x-2\right)}\)
\(\Leftrightarrow x^2+2x-2=x^2-2x\)
\(\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{1}{2}\)
Cho mình sửa lại nhé:
\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\left(đk:x\ne0,x\ne2\right)\)
\(\Leftrightarrow\dfrac{\left(x+2\right)x-2}{x\left(x-2\right)}=\dfrac{x-2}{x\left(x-2\right)}\)
\(\Leftrightarrow x^2+2x-2=x-2\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)
\(\frac{2x-1}{x}+\frac{3-x}{4}=2\)
\(ĐKXĐ:x\ne0\)
\(MTC:4x\)
\(\frac{4\left(2x-1\right)}{4x}+\frac{x\left(3-x\right)}{4x}=\frac{8x}{4x}\)
\(\Rightarrow4\left(2x-1\right)+x\left(x-3\right)=8x\)
\(\Leftrightarrow8x-4+x^2-3x=8x\)
\(\Leftrightarrow8x-4+x^2-3x-8x=0\)
\(\Leftrightarrow x^2-3x-4=0\)
\(\Leftrightarrow x^2-4x+x-4=0\)
\(\Leftrightarrow\left(x^2-4x\right)+\left(x-4\right)=0\)
\(\Leftrightarrow x\left(x-4\right)+\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+1\right)=0\)
Hoặc\(\hept{\begin{cases}x-4=0\\x+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\left(N\right)\\x=-1\left(N\right)\end{cases}}}\)
Vậy tập nghiệp của pt là \(S=\left\{-1;4\right\}\)
\(\frac{x+1}{2x-2}-\frac{x-1}{2x+2}=\frac{2}{x^2-1}\)
\(ĐKXĐ:x\ne\pm1\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(2x+2\right)}{4\left(x^2-1\right)}-\frac{\left(x-1\right)\left(2x-2\right)}{4\left(x^2-1\right)}=\frac{8}{4\left(x^2-1\right)}\)
\(\Leftrightarrow\left(x+1\right)\left(2x+2\right)-\left(x-1\right)\left(2x-2\right)=8\)
\(\Leftrightarrow2x^2+2x+2x+2-2x^2+2x+2x-2=8\)
\(\Leftrightarrow8x=8\)
\(\Leftrightarrow x=1\)(0 TM)
Vậy phương trình trên vô nghiệm
#hoktot<3#