\(\sqrt[4]{97-x}+\sqrt[4]{x-15}=4\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2018

đặt căn bậc 4(97-x)=a;..=b=> a^4+b^4=..và a+b=...

30 tháng 1 2016

a =\(\sqrt[4]{97-x}\)

b=\(\sqrt[4]{x}\)

=> a +b =5 và a4 + b4 = 97

=> a =2 ; b =3 

=> x =81

 

30 tháng 1 2016

và ngược lại nữa nhé.

24 tháng 7 2019

\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}=4.\)

\(\Rightarrow\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}=4\)

\(\Rightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}=4\)

\(\Rightarrow\sqrt{x-4}+2+\sqrt{x-4}-2=0\)

\(\Rightarrow2\sqrt{x-2}=0\)

\(\Rightarrow\sqrt{x-2}=0\Rightarrow x-2=0\Rightarrow x=2\)

13 tháng 9 2018

\(\Leftrightarrow\left(\sqrt{x+1}+\sqrt{x+16}\right)^2=\left(\sqrt{x+4}+\sqrt{x+9}\right)^2\)

\(\Leftrightarrow x+1+x+16+2.\sqrt{\left(x+1\right).\left(x+16\right)}=x+4+x+9+2.\sqrt{\left(x+4\right).\left(x+9\right)}\)

\(\Leftrightarrow2x+17+2.\sqrt{\left(x+1\right).\left(x+16\right)}=2x+13+2.\sqrt{\left(x+4\right).\left(x+9\right)}\)

\(\Leftrightarrow4+2.\sqrt{\left(x+1\right)\left(x+16\right)}=2.\sqrt{\left(x+4\right).\left(x+9\right)}\)

\(\Leftrightarrow2.\left(2+\sqrt{\left(x+1\right)\left(x+16\right)}\right)=2.\sqrt{\left(x+4\right).\left(x+9\right)}\)

\(\Leftrightarrow\sqrt{x^2+17x+16}+1=\sqrt{x^2+13x+36}\)

Bình phương 2 vế ta được 

\(x^2+17x+16+1+2.\sqrt{x^2+17x+16}=x^2+13x+36\)

\(\Leftrightarrow2.\sqrt{x^2+17x+16}=-4x+19\)

Bình phương 2 vế ta được 

\(2x^2+34x+32=16x^2-152x+361\)

\(\Leftrightarrow14x^2-186x+329=0\)

\(\Delta=\left(-186\right)^2-4.14.329=16172\)

\(x_1=\frac{186-\sqrt{16172}}{26}=2,262723898\)

\(x_2=\frac{186+\sqrt{16172}}{26}=12,04496841\)

22 tháng 8 2020

\(\sqrt{x+1}+\sqrt{x+16}=\sqrt{x+4}+\sqrt{x+9}\) 

\(\left(\sqrt{x+1}+\sqrt{x+16}\right)^2=\left(\sqrt{x+4}+\sqrt{x+9}\right)^2\)  

\(x+1+x+16+2\sqrt{\left(x+1\right)\left(x+16\right)}=x+4+x+9+2\sqrt{\left(x+4\right)\left(x+9\right)}\)     

\(2x+17+2\sqrt{x^2+17x+16}=2x+13+2\sqrt{x^2+13x+36}\) 

\(4+2\sqrt{x^2+17x+16}=2\sqrt{x^2+13x+36}\)   

\(2+\sqrt{x^2+17x+16}=\sqrt{x^2+13x+36}\) 

\(\left(2+\sqrt{x^2+17x+16}\right)^2=\left(\sqrt{x^2+13x+36}\right)^2\)             

\(4+x^2+17x+16+4\sqrt{x^2+17x+16}=x^2+13x+36\) 

\(4\sqrt{x^2+17x+16}=-4x+16\) 

\(\sqrt{x^2+17x+16}=-x+4\)          

\(\hept{\begin{cases}-x+4\ge0\\x^2+17x+16=\left(-x+4\right)^2\end{cases}}\)    

\(\hept{\begin{cases}-x\ge-4\\x^2+17x+16=x^2-8x+16\end{cases}}\) 

\(\hept{\begin{cases}x\le4\\25x=0\end{cases}}\)  

\(\hept{\begin{cases}x\le4\\x=0\end{cases}}\)      

\(\Rightarrow x=0\) 

\(a,PT\Leftrightarrow\sqrt{x-1-2\sqrt{x-1}+1}=3\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}=3\)

\(\Leftrightarrow\sqrt{x-1}=4\Leftrightarrow x-1=16\Leftrightarrow x=17\)

Vậy............................................

\(b,PT\Leftrightarrow\sqrt{\left(x^2-1\right)^2}=x-1\)

\(\Leftrightarrow x^2-1=x-1\Leftrightarrow x^2=x\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Vậy...............................................

đặt \(\sqrt{x+y-4}=a;\sqrt{x-y+4}=b;\sqrt{-x+y+4}=c\left(a;b;c\ge0\right)\)

pt trở thành a+b+c=\(\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\)

bunhia có VT\(\le\)VP 

dấu = xảy ra <=>a=b=c<=>x=y=4