Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: Ta có
\(\sqrt{x}=\sqrt{17-12\sqrt{2}}=\sqrt{9-2.3.2\sqrt{2}+\left(2\sqrt{2}\right)^2}=\sqrt{\left(3-2\sqrt{2}\right)^2}=3-2\sqrt{2}\)
Vậy thì \(f\left(x\right)=\frac{1-3+2\sqrt{2}+17-2\sqrt{2}}{3-2\sqrt{2}}=\frac{15}{3-2\sqrt{2}}=45+30\sqrt{2}\)
Câu 2: ĐK: \(0\le x\le1\)
\(pt\Leftrightarrow\sqrt{3x\left(x+1\right)}+\sqrt{x\left(1-x\right)}=2x+1\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{3x+3}+\sqrt{1-x}\right)=\frac{1}{2}\left(4x+2\right)\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{3x+3}+\sqrt{1-x}\right)=\frac{1}{2}\left[\left(3x+3\right)-\left(1-x\right)\right]\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{3x+3}+\sqrt{1-x}\right)=\frac{1}{2}\left(\sqrt{3x+3}+\sqrt{1-x}\right)\left(\sqrt{3x+3}-\sqrt{1-x}\right)\)
\(\Leftrightarrow\left(\sqrt{3x+3}+\sqrt{1-x}\right)\left[\sqrt{x}-\frac{1}{2}\left(\sqrt{3x+3}-\sqrt{1-x}\right)\right]=0\)
TH1: \(\sqrt{3x+3}+\sqrt{1-x}=0\Leftrightarrow\hept{\begin{cases}3x+3=0\\1-x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\x=1\end{cases}}\) (Vô lý)
TH2: \(2\sqrt{x}-\sqrt{3x+3}+\sqrt{1-x}=0\)
\(\Leftrightarrow2\sqrt{x}+\sqrt{1-x}=\sqrt{3x+3}\Leftrightarrow4x+1-x+4\sqrt{x\left(1-x\right)}=3x+3\)
\(\Leftrightarrow4\sqrt{x\left(1-x\right)}=2\Leftrightarrow x=\frac{1}{2}\left(tm\right)\)
Vậy phương trình có nghiệm \(x=\frac{1}{2}\)
\(2x^3-x^2+\sqrt[3]{2x^3-3x+1}=3x+1+\sqrt[3]{x^2+2}.\)
\(\Leftrightarrow\left(2x^3-3x+1\right)-\left(x^2+2\right)+\sqrt[3]{2x^2-3x+1}-\sqrt[3]{x^2+2}=0\)(*)
Đặt \(\sqrt[3]{2x^3-3x+1}=a\Rightarrow2x^3-3x+1=a^3\); \(\sqrt[3]{x^2+2}=b\Rightarrow b^3=x^2+2\)
Khi đó: (*) \(\Leftrightarrow a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)
\(\Rightarrow a-b=0\)( Vì: \(a^2+ab+b^2+1=\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2+1>0\))
\(\Leftrightarrow a=b\)hay \(\sqrt[3]{2x^3-3x+1}=\sqrt[3]{x^2+2}\)
\(\Leftrightarrow2x^3-3x+1=x^2+2\Leftrightarrow\left(2x^3+x^2\right)-\left(2x^2+x\right)-\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x^2-x-1\right)=0\Leftrightarrow\orbr{\begin{cases}2x+1=0\left(1\right)\\x^2-x-1=0\left(2\right)\end{cases}}\)
Giải (1)ta được \(x=-\frac{1}{2}\)
Giải (2) ta có: \(x^2-x-1=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2=\frac{5}{4}\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{2}=\frac{\sqrt{5}}{2}\\x-\frac{1}{2}=-\frac{\sqrt{5}}{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{\sqrt{5}+1}{2}\\x=\frac{-\sqrt{5}+1}{2}\end{cases}}\)
Vậy tập nghiệm của phương trình đã cho là: \(S=\left\{-\frac{1}{2};\frac{\sqrt{5}+1}{2};\frac{-\sqrt{5}+1}{2}\right\}.\)
pt(1)\(\Leftrightarrow\left(\sqrt{2x^2+x+1}-2x\right)+\left(\sqrt{x^2-x+1}-x\right)=0\left(đk;x\ge0\right)\)
\(\Leftrightarrow\frac{-2x^2+x+1}{\sqrt{2x^2+x+1}+2x}+\frac{-x+1}{\sqrt{x^2-x+1}+x}=0\)
\(\Leftrightarrow\frac{\left(2x+1\right)\left(x-1\right)}{\sqrt{2x^2+x+1}+2x}+\frac{x-1}{\sqrt{x^2-x+1}+x}=0\)
\(\Leftrightarrow x=1\)
\(\sqrt{x+3}+\sqrt{3x+1}=2\sqrt{x}+\sqrt{2x+2}\)
\(\Leftrightarrow\sqrt{x+3}-2\sqrt{x}=\sqrt{2x+2}-\sqrt{3x+1}\)
\(\Leftrightarrow x+3+4x-4\sqrt{x+3}.\sqrt{x}=2x+2+3x+1-2\sqrt{2x+2}.\sqrt{3x+1}\)
\(\Leftrightarrow2\sqrt{x+3}.\sqrt{x}=\sqrt{2x+2}.\sqrt{3x+1}\)
\(\Leftrightarrow4\left(x^2+3x\right)=6x^2+8x+2\)
\(\Leftrightarrow4\left(x^2+3x\right)=6x^2+8x+2\)
\(\Leftrightarrow x=1\)
Bổ sung tiếp bài của dưới
\(4\left(x^2+3x\right)-6x^2-8x-2=0\)
\(\Rightarrow4x^2-12x-6x^2-8x-2=0\)
\(\Rightarrow-2x^2+4x-2=\left(-2\right)\left(x^2-2x+1\right)=0\)
\(\Rightarrow-2\left(x-1\right)^2=0\Leftrightarrow x=1\)
\(\sqrt{x^2+2x}+\sqrt{2x-1}=\sqrt{3x^2+4x+1}\)(ĐK:\(x>\frac{1}{2}\))
\(\Leftrightarrow x^2+2x+2x-1+2\sqrt{\left(x^2+2x\right)\left(2x-1\right)}=3x^2+4x+1\)(BP 2 vế)
\(\Leftrightarrow2\sqrt{2x^3-x^2+4x^2-2x}=2x^2+2\)
\(\Leftrightarrow\sqrt{2x^3+2x+3x^2+3-4x-3}=x^2+1\)
Đặt \(x^2+1=t\)
pt\(\Leftrightarrow\sqrt{2xt+3t-\left(4x+3\right)}=t\)
\(\Leftrightarrow2xt+3t-4x-3=t^2\)
\(\Leftrightarrow t^2-t\left(2x+3\right)+4x+3=0\)
\(\Delta=\left(2x+3\right)^2-4.\left(4x+3\right)=4x^2+12x+9-16x-12=4x^2-4x-3\)
\(\hept{\begin{cases}t_1=\frac{2x+3-\sqrt{4x^2-4x-3}}{2}\\t_2=\frac{2x+3+\sqrt{4x^2-4x-3}}{2}\end{cases}}\)
TH1:\(t=\frac{2x+3-\sqrt{4x^2-4x-3}}{2}\)
\(\Rightarrow2x^2+2=2x+3-\sqrt{4x^2-4x-3}\)
\(\Leftrightarrow2x^2+2=2x+3-\sqrt{4x^2+4x-8x-3}\)
\(\Leftrightarrow2t=2x+3-\sqrt{4t-8x-3}\)
Giải ra rồi thay TH2