\(\left|x-2015\right|^{2016}+\left|x-2016\right|^{2017}=1\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2016

\(\left|x-2015\right|^{2016}+\left|x-2016\right|^{2017}=1\)

Có: \(\left|x-2015\right|^{2016}\ge0;\left|x-2016\right|^{2017}\ge0\)

TH1: \(\hept{\begin{cases}\left|x-2015\right|^{2016}=1\\\left|x-2016\right|^{2017}=0\end{cases}}\Rightarrow\hept{\begin{cases}\left|x-2015\right|=1\\\left|x-2016\right|=0\end{cases}}\)

THa: \(x-2015=-1\Rightarrow x=2014\)

Thay vào: \(2014-2016\ne0\) ( loại)

THb: \(x-2015=1\Rightarrow x=2016\)

Thay vào:  \(2016-2016=0\)( chọn )

TH2: \(\hept{\begin{cases}\left|x-2015\right|^{2016}=0\\\left|x-2016\right|^{2017}=1\end{cases}}\Rightarrow\hept{\begin{cases}\left|x-2015\right|=0\\\left|x-2016\right|=1\end{cases}}\)

THc: \(x-2016=-1\Rightarrow x=2015\)

Thay vào:  \(2015-2015=0\)( chọn )

THd: \(x-2016=1\Rightarrow x=2017\)

Thay vào: \(2017-2015\ne0\)

Vậy: x = 2016 hoặc x = 2015

2 tháng 9 2016

x=2015

2 tháng 11 2016

Bài trên mình đã giải rồi, hai nghiệm là x = 2016 và x = 2017

3 tháng 11 2016

Xét:

1.Nếu \(x=2016\)hoặc \(x=2017\)thì thỏa mãn đề bài

2. Nếu \(x< 2016\)thì l\(x-2016\)l\(^{2016}\)>0, lx-2017l\(^{2017}\)>1

=>lx-2016l\(^{2016}\)+lx-2017l\(^{2017}\)>1 => vô nghiệm 

3.Nếu x>2017 thì lx-2016l\(^{2016}\)>1,lx-2017l\(^{2017}\)>0

=>lx-2016l\(^{2016}\)+lx-2017l\(^{2017}\)>1=> vô nghiệm

Vậy phương trình có 2 nghiệm là ..................

23 tháng 4 2017

nếu x<2017 thì x-2017<2017

vì tổng của các giá trị tuyệt đối không thể là số âm nên x<2017 loại.

xét \(x\ge2017\), ta có:\(\left|x-2014\right|=x-2014\\ \left|2x-2015\right|=2x-2015\\\left|3x-2016\right|=3x-2016\)

khi đó:

\(x-2014+2x-2015+3x-2016=x-2017\\ \Leftrightarrow6x=4028\\ \Leftrightarrow x=\dfrac{2014}{3}\left(loại\right)\)

vậy phương trình đã cho vô nghiệm.

10 tháng 5 2018

\(\left|x-2014\right|+\left|2x-2015\right|+\left|3x-2016\right|=x-2017\)

Do \(\left|x-2014\right|+\left|2x-2015\right|+\left|3x-2016\right|\ge0\forall x\)

\(\Rightarrow x-2017\ge0\\ \Leftrightarrow x\ge2017\)

\(\Rightarrow\left\{{}\begin{matrix}x-2014\ge3>0\\2x-2015\ge2019>0\\3x-2016\ge4035>0\end{matrix}\right.\)

\(pt\Leftrightarrow\left|x-2014\right|+\left|2x-2015\right|+\left|3x-2016\right|=x-2017\\ \Leftrightarrow x-2014+2x-2015+3x-2016=x-2017\\ \Leftrightarrow6x-6045=x-2017\\ \Leftrightarrow6x-x=-2017+6045\\ \Leftrightarrow5x=4028\\ \Leftrightarrow x=\dfrac{4028}{5}\\ \)

Vậy pt có nghiệm \(x=\dfrac{4028}{5}\)

2 tháng 5 2016

Đặt 2x2+x-2015=a; x2-5x-2016=b

phương trình tương đương a2+4b2=4ab

=> a2-4ab+4b2=0

=> (a-2b)2=0

=> a=2b

vậy 2x2+x-2015=2*(x2-5x-2016)

=> x=\(\frac{-2017}{11}\)

tớ ko bt lm abc , tớ lm d thôi nha , thứ lỗi 

\(\frac{5}{2x-3}-\frac{1}{x+2}=\frac{5}{x-6}-\frac{7}{2x-1}\)

\(\frac{3x+13}{2x^2+x-6}=\frac{5}{x-6}+\frac{7}{1-2x}\)

\(\frac{3x+13}{\left(x+2\right)\left(2x-3\right)}=\frac{3x+37}{\left(x-6\right)\left(2x-1\right)}\)

\(\frac{10-9x}{-4x^3+32x^2-51x+18}=0\)

\(\Rightarrow\orbr{\begin{cases}x=-3\\x=\frac{10}{9}\end{cases}}\)

Ta có :

\(\left(x^2-2014\right)\left(x^2-2015\right)\left(x^2-2016\right)\)\(=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x^2-2014=0\\x^2-2015=0\\x^2-2016=0\end{cases}}\)

Giải (1) :

    \(x^2-2014=0\)

     \(\hept{\begin{cases}x=\sqrt{2014}\\x=-\sqrt{2014}\end{cases}}\)

Giải (2) :

     \(x^2-2015=0\)

        \(\hept{\begin{cases}x=\sqrt{2015}\\x=-\sqrt{2015}\end{cases}}\)

Giải (3) :

   \(x^2-2016=0\)

    \(\hept{\begin{cases}x=\sqrt{2016}\\x=-\sqrt{2016}\end{cases}}\)

Vậy nghiệm nhỏ nhất của phương trình là \(x=-\sqrt{2016}\)

Chú ý : \(x^2-2014=0\)(1)

            \(x^2-2015=0\)(2)

            \(x^2-2016=0\)(3)

11 tháng 1 2020

\(\frac{x}{2016}+\frac{x-1}{2015}+\frac{x-2}{2014}+\frac{x-3}{2013}=4\)

\(\Leftrightarrow\left(\frac{x}{2016}-1\right)+\left(\frac{x-1}{2015}-1\right)+\left(\frac{x-2}{2014}-1\right)+\left(\frac{x-3}{2013}-1\right)=0\)

\(\Leftrightarrow\frac{x-2016}{2016}+\frac{x-2016}{2015}+\frac{x-2016}{2014}+\frac{x-2016}{2013}=0\)

\(\Leftrightarrow\left(x-2016\right)\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}+\frac{1}{2013}\right)=0\)

Dễ thấy cái vế sau > 0 nên x=2016

11 tháng 1 2020

Câu b có cách nào hay hơn bằng cách phá ko ta,hóng quá:)

\(125x^3=\left(2x+1\right)^3+\left(3x-1\right)^3\)

\(\Leftrightarrow8x^3+12x^2+6x+1+27x^3-27x^2+9x-1=125x^3\)

\(\Leftrightarrow35x^3-15x^2+15x=125x^3\)

\(\Leftrightarrow90x^3+15x^2-15x=0\)

\(\Leftrightarrow x\left(90x^2+15x-15\right)=0\)

\(\Leftrightarrow x\left(3x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow x=0;x=-\frac{1}{2};x=\frac{1}{3}\)