Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
PT:
đkxđ: \(x\ne0;x\ne2\)
Ta có: \(\frac{x+2}{x-2}=\frac{2}{x^2-2x}+\frac{1}{x}\)
\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}+\frac{x-2}{x\left(x-2\right)}\)
\(\Rightarrow x^2+2x=2+x-2\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(vl\right)\\x+1=0\end{cases}}\Rightarrow x=-1\)
BPT:
Ta có: \(\frac{x+1}{2}-x\le\frac{1}{2}\)
\(\Leftrightarrow\frac{x+1}{2}-x-\frac{1}{2}\le0\)
\(\Leftrightarrow\frac{x+1-2x-1}{2}\le0\)
\(\Leftrightarrow\frac{-x}{2}\le0\)
\(\Rightarrow-x\le0\)
\(\Rightarrow x\ge0\)
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)
\(\frac{x+2}{x-2}=\frac{2}{x^2-2x}+\frac{1}{x}\)
\(\Leftrightarrow\frac{2}{x\left(x-2\right)}+\frac{1}{x}-\frac{x+2}{x-2}=0\)
\(\Leftrightarrow\frac{2+x-2-x^2-2x}{x\left(x-2\right)}=0\)
\(\Leftrightarrow-x^2-x=0\)
\(\Leftrightarrow-x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=-1\left(tm\right)\end{cases}}}\)
Vậy \(S=\left\{-1\right\}\)
b) \(\frac{x+1}{2}-x\le\frac{1}{2}\)
\(\Leftrightarrow x+1-2x-1\le0\)
\(\Leftrightarrow-x\le0\)
\(\Leftrightarrow x\ge0\)
Vậy \(x\ge0\)
ĐK: x \(\ne\)-1; x \(\ne\)2
\(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-2}+1\)
<=> \(\frac{\left(x+2\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}+\frac{3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\frac{3}{\left(x+1\right)\left(x-2\right)}+\frac{\left(x+1\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}\)
<=> x2 - 4 + 3x + 3 = 3 + x2 - x - 2
<=> x2 + 3x - x2 + x = 1 + 1
<=> 4x = 2
<=> x = 1/2
Vậy S = {1/2}
phương trình tương đương với 1+\(\frac{1}{x}+1+\frac{1}{x+3}\)=1+\(\frac{1}{x+1}+1+\frac{1}{x+2}\)\(\Leftrightarrow\frac{1}{x}+\frac{1}{x+3}=\frac{1}{x+2}+\frac{1}{x+1}\)
\(\Leftrightarrow\frac{2x+3}{x\left(x+3\right)}=\frac{2x+3}{\left(x+1\right)\left(x+2\right)}\)\(\Leftrightarrow\left(2x+3\right)\left(\frac{1}{x\left(x+3\right)}-\frac{1}{\left(x+1\right)\left(x+2\right)}\right)\)=0
\(\Leftrightarrow\left(2x+3\right)\left(\frac{\left(x+1\right)\left(x+2\right)-x\left(x+3\right)}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(\frac{2}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}\right)=0\)\(\Leftrightarrow2x+3=0\Leftrightarrow x=\frac{-3}{2}\)
Bàii làm
a) ( x - 2 )( x - 3 ) = x2 - 4
<=> x2 - 2x - 3x + 6 = x2 - 4
<=> x2 - x2 - 5x + 6 - 4 = 0
<=> -5x + 2 = 0
<=> -5x = -2
<=> x = 2/5
Vậy x = 2/5 là nghiệm phương trình.
b) \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{x+6}{x\left(x-2\right)}\)
=> x( x + 2 ) - ( x - 2 ) = x + 6
<=> x2 + 2x - x + 2 - x - 6 = 0
<=> x2 - 4 = 0
<=> x2 = 4
<=> x = + 4
Vậy nghiệm S = { + 4 }
c) \(\frac{2x-1}{-3}>1\)
\(\Leftrightarrow\frac{2x-1}{-3}.\left(-3\right)< 1\left(-3\right)\)
\(\Leftrightarrow2x-1< -3\)
\(\Leftrightarrow2x< -2\)
\(\Leftrightarrow x< -1\)
Vậy nghiệm bất phương trình S = { x / x < -1 }
d) ( x - 1 )2 < 5 - 2x
<=> x2 - 2x + 1 < 5 - 2x
<=> x2 - 2x + 1 - 5 + 2x < 0
<=> x2 - 4 < 0
<=> x2 < 4
<=> x < + 2
Vậy tập nghiệm S = { x / x < +2 }
\(a,\Leftrightarrow5\left(x-2\right)-15x\le9+10\left(x+1\right)\)
\(\Leftrightarrow5x-10-15x\le9+10x+10\)
\(\Leftrightarrow-20x\le29\)
\(\Leftrightarrow x\ge-1,45\)
Vậy ...........
\(b,\Rightarrow\left(x+2\right)-3\left(x-3\right)=5\left(x-2\right)\)
\(\Leftrightarrow x+2-3x+9-5x+10=0\)
\(\Leftrightarrow-7x+21=0\)
\(\Leftrightarrow x=3\)
Vậy ..............
\(\frac{x-2}{6}-\frac{x}{2}\le\frac{3}{10}+\frac{x+1}{3}\Leftrightarrow\frac{5\left(x-2\right)}{30}-\frac{15x}{30}\le\frac{9}{30}+\frac{10\left(x+1\right)}{30}\)
\(\Leftrightarrow5x-10-15x-9-10x-10\le0\)
\(\Leftrightarrow-20x-29\le0\Leftrightarrow\left(-20x\right)\cdot\frac{-1}{20}\ge29\cdot-\frac{1}{20}\)
\(\Leftrightarrow x\ge-\frac{29}{20}\)