Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)
Đặt \(\frac{x-2}{x-1}=a;\frac{x+2}{x+1}=b\) ta có: \(pt\Leftrightarrow10a^2+b^2-11ab=0\)
\(\Leftrightarrow10a^2-10ab-ab+b^2=0\Leftrightarrow\left(a-b\right)\left(10a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\\10a=b\end{cases}}\)
TH1: \(\frac{x-2}{x-1}=\frac{x+2}{x+1}\)
TH2: \(10.\frac{x-2}{x-1}=\frac{x+2}{x+1}\)
Từ đó em có thể làm tiếp nhé.
xy - 2x - 3y + 1 = 0
<=> x(y - 2) = 3y - 1
<=> \(=\frac{3y-1}{y-2}=3+\frac{5}{y-2}\)
Để x nguyên thì (y - 2) phải là ước của 5 hay
(y - 2) = (1, 5, - 1, - 5)
Giải tiếp sẽ ra
a,x4-10x2+9=0
=>(x-1)(x3+x2-9x-9)=0
=> (x-1)(x+1)(x-3)(x+3)=0
=>\(\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\)hoặc\(\orbr{\begin{cases}x-3=0\\x+3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=\pm1\\x=\pm3\end{cases}}\)
Vậy tập nghiệm cuả pt là S={\(\pm1,\pm3\)}
Theo định lí viet: \(x_1x_2=-10;x_1+x_2=-3\)
=> \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{x_1x_2}=\frac{-3}{-10}=\frac{3}{10}\)
Câu 2/
Điều kiện xác định b tự làm nhé:
\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
\(\Leftrightarrow x^4-25x^2+150=0\)
\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)
Tới đây b làm tiếp nhé.
a. ĐK: \(\frac{2x-1}{y+2}\ge0\)
Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)
\(\)Dấu bằng xảy ra khi \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\)
Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)
b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)
\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)
\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)
a: \(\Leftrightarrow\left\{{}\begin{matrix}x^2-4x+4=x^2-1\\x>=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4x=-5\\x>=2\end{matrix}\right.\Leftrightarrow x=\dfrac{5}{4}\left(loại\right)\)
b: \(\Leftrightarrow\sqrt{2x^2+1}=5\)
\(\Leftrightarrow2x^2+1=25\)
\(\Leftrightarrow2x^2=24\)
hay \(x\in\left\{2\sqrt{3};-2\sqrt{3}\right\}\)
c: \(\Leftrightarrow\left|x\right|+\left|x-1\right|=2\)
Trường hợp 1: x<0
Pt trở thành -x-x+1=2
=>-2x=1
hay x=-1/2(nhận)
TRường hợp 2:0<=x<1
Pt trở thành x+1-x=2
=>1=2(loại)
Trường hợp 3: x>=1
Pt trở thành x+x-1=2
=>2x-1=2
hay x=3/2(nhận)
đề sai rồi bạn ạ
Đề ko sai đau bạn