![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài làm:
PT:
đkxđ: \(x\ne0;x\ne2\)
Ta có: \(\frac{x+2}{x-2}=\frac{2}{x^2-2x}+\frac{1}{x}\)
\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}+\frac{x-2}{x\left(x-2\right)}\)
\(\Rightarrow x^2+2x=2+x-2\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(vl\right)\\x+1=0\end{cases}}\Rightarrow x=-1\)
BPT:
Ta có: \(\frac{x+1}{2}-x\le\frac{1}{2}\)
\(\Leftrightarrow\frac{x+1}{2}-x-\frac{1}{2}\le0\)
\(\Leftrightarrow\frac{x+1-2x-1}{2}\le0\)
\(\Leftrightarrow\frac{-x}{2}\le0\)
\(\Rightarrow-x\le0\)
\(\Rightarrow x\ge0\)
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)
\(\frac{x+2}{x-2}=\frac{2}{x^2-2x}+\frac{1}{x}\)
\(\Leftrightarrow\frac{2}{x\left(x-2\right)}+\frac{1}{x}-\frac{x+2}{x-2}=0\)
\(\Leftrightarrow\frac{2+x-2-x^2-2x}{x\left(x-2\right)}=0\)
\(\Leftrightarrow-x^2-x=0\)
\(\Leftrightarrow-x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\left(ktm\right)\\x=-1\left(tm\right)\end{cases}}}\)
Vậy \(S=\left\{-1\right\}\)
b) \(\frac{x+1}{2}-x\le\frac{1}{2}\)
\(\Leftrightarrow x+1-2x-1\le0\)
\(\Leftrightarrow-x\le0\)
\(\Leftrightarrow x\ge0\)
Vậy \(x\ge0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐK: x \(\ne\)-1; x \(\ne\)2
\(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-2}+1\)
<=> \(\frac{\left(x+2\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}+\frac{3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\frac{3}{\left(x+1\right)\left(x-2\right)}+\frac{\left(x+1\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}\)
<=> x2 - 4 + 3x + 3 = 3 + x2 - x - 2
<=> x2 + 3x - x2 + x = 1 + 1
<=> 4x = 2
<=> x = 1/2
Vậy S = {1/2}
![](https://rs.olm.vn/images/avt/0.png?1311)
phương trình tương đương với 1+\(\frac{1}{x}+1+\frac{1}{x+3}\)=1+\(\frac{1}{x+1}+1+\frac{1}{x+2}\)\(\Leftrightarrow\frac{1}{x}+\frac{1}{x+3}=\frac{1}{x+2}+\frac{1}{x+1}\)
\(\Leftrightarrow\frac{2x+3}{x\left(x+3\right)}=\frac{2x+3}{\left(x+1\right)\left(x+2\right)}\)\(\Leftrightarrow\left(2x+3\right)\left(\frac{1}{x\left(x+3\right)}-\frac{1}{\left(x+1\right)\left(x+2\right)}\right)\)=0
\(\Leftrightarrow\left(2x+3\right)\left(\frac{\left(x+1\right)\left(x+2\right)-x\left(x+3\right)}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(\frac{2}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}\right)=0\)\(\Leftrightarrow2x+3=0\Leftrightarrow x=\frac{-3}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt x+1/x = a
=> x^2+1/x^2 = a^2-2
pt trở thành : a = a^2-2
<=> a^2-a-2 = 0
<=> (a^2+a)-(2a+2) = 0
<=> (a+1).(a-2) = 0
<=> a+1=0 hoặc a-2=0
<=> a=-1 hoặc a=2
<=> x+1/x = -1 hoặc x+1/x = 2
Đến đó bạn tự giải nha
Tk mk nha
![](https://rs.olm.vn/images/avt/0.png?1311)
Bàii làm
a) ( x - 2 )( x - 3 ) = x2 - 4
<=> x2 - 2x - 3x + 6 = x2 - 4
<=> x2 - x2 - 5x + 6 - 4 = 0
<=> -5x + 2 = 0
<=> -5x = -2
<=> x = 2/5
Vậy x = 2/5 là nghiệm phương trình.
b) \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{x+6}{x\left(x-2\right)}\)
=> x( x + 2 ) - ( x - 2 ) = x + 6
<=> x2 + 2x - x + 2 - x - 6 = 0
<=> x2 - 4 = 0
<=> x2 = 4
<=> x = + 4
Vậy nghiệm S = { + 4 }
c) \(\frac{2x-1}{-3}>1\)
\(\Leftrightarrow\frac{2x-1}{-3}.\left(-3\right)< 1\left(-3\right)\)
\(\Leftrightarrow2x-1< -3\)
\(\Leftrightarrow2x< -2\)
\(\Leftrightarrow x< -1\)
Vậy nghiệm bất phương trình S = { x / x < -1 }
d) ( x - 1 )2 < 5 - 2x
<=> x2 - 2x + 1 < 5 - 2x
<=> x2 - 2x + 1 - 5 + 2x < 0
<=> x2 - 4 < 0
<=> x2 < 4
<=> x < + 2
Vậy tập nghiệm S = { x / x < +2 }
![](https://rs.olm.vn/images/avt/0.png?1311)
Điều kiện: x khác 0
Đặt \(\frac{x^2+1}{x}=t\Rightarrow\frac{x}{x^2+1}=\frac{1}{t}\)
Khi đó: \(\frac{x^2+1}{x}+\frac{x}{x^2+1}=\frac{5}{2}\)
\(\Leftrightarrow t+\frac{1}{t}=\frac{5}{2}\)
\(\Leftrightarrow\frac{t^2+1}{t}=\frac{5}{2}\Rightarrow2t^2+2=5t\)
\(\Leftrightarrow2t^2-5t+2=0\Leftrightarrow\left(2t-1\right)\left(t-2\right)=0\Leftrightarrow\orbr{\begin{cases}t=\frac{1}{2}\\t=2\end{cases}}\)
Nếu \(t=\frac{1}{2}\Rightarrow\frac{x^2+1}{x}=\frac{1}{2}\Rightarrow2x^2+2=x\)
\(\Leftrightarrow2x^2-x+2=0\)
Mà \(2x^2-x+2=2\left(x-\frac{1}{4}\right)^2+\frac{15}{8}>0\forall x\)
Nên \(x\in\varnothing\)
Nếu \(t=2\Rightarrow\frac{x^2+1}{x}=2\Rightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)(thỏa mãn ĐKXĐ)
Tập nghiệm của pt: \(S=\left\{1\right\}\)
\(\)
Theo BĐT AM-GM,ta có: \(x^2+1\ge2\left|x\right|\ge2x\Rightarrow\frac{x^2+1}{x}\ge2\)
Đặt \(\frac{x^2+t}{x}=t\left(t\ge2\right)\).Bài toán trở thành:
\(t+\frac{1}{t}=\frac{5}{2}\Leftrightarrow\left(\frac{1}{t}+\frac{t}{4}\right)+\frac{3t}{4}=\frac{5}{2}\)
Áp dụng BĐT AM-GM: \(VT\ge1+\frac{3t}{4}\ge1+\frac{6}{4}=\frac{5}{2}\)
Mà \(VT=\frac{5}{2}\) .Dấu "=" xảy ra khi \(\frac{1}{t}=\frac{t}{4}\Leftrightarrow t=2\Leftrightarrow\frac{x^2+1}{x}=2\Leftrightarrow x^2+1=2x\Leftrightarrow x=1\)
Vậy tập hợp nghiệm của phương trình: \(S=\left\{1\right\}\)
ĐKXĐ: x khác 0
\(x+\frac{1}{x}=x^2+\frac{1}{x^2}\Leftrightarrow\frac{x^3+x}{x^2}=\frac{x^4+1}{x^2}\)
=>x3+x=x4+1
<=>x4-x3-x+1=0
<=>x3(x-1)-(x-1)=0
<=>(x-1)(x3-1)=0
<=>(x-1)2(x2+x+1)=0
Mà \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
=>x-1=0 <=> x=1 (tmđk)
vậy pt có tập nghiệm là S={1}