
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


chẳng ai giải, thôi mình giải vậy!
a) Đặt \(y=x^2+4x+8\),phương trình có dạng:
\(t^2+3x\cdot t+2x^2=0\)
\(\Leftrightarrow t^2+xt+2xt+2x^2=0\)
\(\Leftrightarrow t\left(t+x\right)+2x\left(t+x\right)=0\)
\(\Leftrightarrow\left(2x+t\right)\left(t+x\right)=0\)
\(\Leftrightarrow\left(2x+x^2+4x+8\right)\left(x^2+4x+8+x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)vậy tập nghiệm của phương trình là:S={-2;-4}
b) nhân 2 vế của phương trình với 12 ta được:
\(\left(6x+7\right)^2\left(6x+8\right)\left(6x+6\right)=72\)
Đặt y=6x+7, ta được:\(y^2\left(y+1\right)\left(y-1\right)=72\)
giải tiếp ra ta sẽ được S={-2/3;-5/3}
c) \(\left(x-2\right)^4+\left(x-6\right)^4=82\)
S={3;5}
d)s={1}
e) S={1;-2;-1/2}
f) phương trình vô nghiệm

c) (x+1)(x+2)(x+4)(x+5)=40
<=> (x+1)(x+5)(x+2)(x+4)=40
<=>(x^2+6x+5)(x^2+6x+8)=40
Đặt x^2+6x+5=y
=>y(y+3)=40
=>y^2+3y=40<=>y^2+2.\(\frac{3}{2}\)y+\(\frac{9}{4}\)=40+\(\frac{9}{4}\)<=> (y+\(\frac{3}{2}\))2=42,25<=> y+\(\frac{3}{2}\)=6,5 hoặc -6,5
Bạn tự làm tiếp nha :333
a)x4 - 4x3 - 19x2 +106x - 120 = 0
=>x4 -2x3 -2x3+4x2 -23x2 +46x +60x - 120 = 0
=>x3(x-2) -2x2(x-2) -23x(x-2) +60(x-2)= 0
=>(x3- 2x2 -23x+ 60)(x-2) =0
=>(x3 - 3x2 +x2 -3x -20x+60)(x -2) = 0
=>(x2 +x -20)(x-3)(x-2) = 0
=>(x2 -4x +5x -20)(x-3)(x-2) = 0
=>(x+5)(x-4)(x-3)(x-2) =0
=>x= -5; 4; 3; 2
b)=>4x4 -4x3 +16x3 -16x2 +21x2 -21x +15x -15= 0
=>(x-1)(4x3 +16x2 +21x+15)= 0
=>...bạn tự làm phần tiếp theo nhé
c)Làm giống nguyễn thị ngọc linh

f, 3x2+4x-4=0
\(\Leftrightarrow\)3x2+6x-2x-4=0
\(\Leftrightarrow\)3x(x+2)-2(x+2)=0
\(\Leftrightarrow\)(x+2)(3x-2)=0
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\3x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-2\\x=\frac{2}{3}\end{matrix}\right.\left(tm\right)\)
Vậy pt có tập nghiệm S = \(\left\{-2;\frac{2}{3}\right\}\)

\(\left|x-2\right|+\left|x^2-4x+3\right|=0\)
\(\hept{\begin{cases}\left|x-2\right|\ge0\\\left|x^2-4x+3\right|\ge0\end{cases}\text{dấu }=\text{xảy ra khi }}\)
\(\hept{\begin{cases}\left|x-2\right|=0\\\left|x^2-4x+3\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x-2=0\\x^2-4x+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\\left(x-1\right).\left(x-3\right)=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\x=1,x=3\end{cases}}}\)(vô lí)
Vậy phương trình vô nghiệm
p/s: mk ko bt cách trình bài => sai sót bỏ qua

a)<=>\(\left(x^3+x^2-2x\right)+\left(3x^2+3x-6\right)=0\)
<=>\(x\left(x^2+x-2\right)+3\left(x^2+x-2\right)=0\)
<=>\(\left(x^2+x-2\right)\left(x+3\right)=0\)
Phương trình trên bạn tự bấm máy tính nha
<=>\(\left(x-1\right)\left(x+2\right)\left(x+3\right)=0\)
Đến đây tự làm đc rồi
Vậy x=1 hoặc -2 hoặc -3
b)<=>\(\left(x^3-4x^2+4x\right)+\left(x^2-4x+4\right)=0\)
<=>\(x\left(x^2-4x+4\right)+\left(x^2-4x+4\right)=0\)
<=>\(\left(x+1\right)\left(x^2-4x+4\right)=0\)
<=>\(\left(x+1\right)\left(x-2\right)^2=0\)
<=>\(\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
c)Câu c mik chưa làm đc
Đáp án câu C:
\(x^3-4x^2+5x=0\)
\(\Leftrightarrow x\left(x^2-4x^2+5x\right)=0\)
\(Tacó:x^2-4x+5=x^2-4x+2^2+1\)
\(=\left(x-2\right)^2+1\)
\(Mà\left(x-2\right)^2\ge0\)
\(Nên\left(x-2\right)^2+1\ge1\)
\(Khiđó:x\left(x^2-4x+5\right)=0\)
\(\Leftrightarrow x=0\)

Ta có : \(x^4-4x^3+6x^2-4x-15=0\)
=> \(x^4-3x^3-x^3+3x^2+3x^2-9x+5x-15=0\)
=> \(x^3\left(x-3\right)-x^2\left(x-3\right)+3x\left(x-3\right)+5\left(x-3\right)=0\)
=> \(\left(x-3\right)\left(x^3-x^2+3x+5\right)=0\)
=> \(\left(x-3\right)\left(x^3+x^2-2x^2-2x+5x+5\right)=0\)
=> \(\left(x-3\right)\left(x^2\left(x+1\right)-2x\left(x+1\right)+5\left(x+1\right)\right)=0\)
=> \(\left(x-3\right)\left(x+1\right)\left(x^2-2x+5\right)=0\)
=> \(\left(x-3\right)\left(x+1\right)\left(x^2-2x+1+4\right)=0\)
=> \(\left(x-3\right)\left(x+1\right)\left(\left(x-1\right)^2+4\right)=0\)
Mà \(\left(x-1\right)^2+4>0\)
=> \(\left(x-3\right)\left(x+1\right)=0\)
=> \(\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{3;-1\right\}\)
Phương trình tương đương:
\(\begin{array}{l} {x^4} - 4{x^3} + 6{x^2} - 4x + 1 = 16\\ \Leftrightarrow {\left( {x - 1} \right)^4} = 16\\ \Leftrightarrow {\left[ {{{\left( {x - 1} \right)}^2}} \right]^2} - \left( {{2^2}} \right) = 0\\ \Leftrightarrow \left[ {{{\left( {x - 1} \right)}^2} - {2^2}} \right]\left[ {{{\left( {x - 1} \right)}^2} + {2^2}} \right] = 0\\ \Leftrightarrow \left[ \begin{array}{l} {\left( {x - 1} \right)^2} = 4 \Leftrightarrow \left[ \begin{array}{l} x - 1 = 2\\ x - 1 = - 2 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 3\\ x = - 1 \end{array} \right.\\ {\left( {x - 1} \right)^2} = - 4 (VN) \end{array} \right. \end{array}\)

câu 1 theo cách nhẩm nghiệm thì mình thấy hình như bn chép sai đề r
x2-1/x-1>0=>(x-1)(x+1)/x-1>0 rút gọn vế trái còn x+1>0=.x>-1
x2-6x+9>0=>x-3(x-3)>0=>xảy ra khi 2 thừa số này cùng dấu =>x>3 hoặc x<3
thôi có 4 số thì cứ làm 4 số thôi bạn Phạm Thành Đông :))
x4 + 4x3 + 6x2 + 4x = 0
<=> x( x3 + 4x2 + 6x + 4 ) = 0
<=> x( x3 + 2x2 + 2x2 + 4x + 2x + 4 ) = 0
<=> x[ x2( x + 2 ) + 2x( x + 2 ) + 2( x + 2 ) ] = 0
<=> x( x + 2 )( x2 + 2x + 2 ) = 0
<=> x = 0 hoặc x + 2 = 0 [ ( x2 + 2x + 2 ) = ( x2 + 2x + 1 ) + 1 = ( x + 1 )2 + 1 ≥ 1 > 0 ∀ x ]
<=> x = 0 hoặc x = -2
Vậy S = { 0 ; -2 }
tớ tưởng có 5 số chứ.