K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2016

n *o biets

15 tháng 1 2018

câu này xài cách đặt ẩn giống câu trên luôn

b) Đặt n = x2-3x+3 ta được

n(n+x)=2x2

n2 +nx-2x2=0

n^2-1nx+2nx-2x^2=0

n(n-x)+2x(n-x)=0

(n+2x)(n-x)=0

(x^2-3x+3+2x)(x^2-3x+3-x)=0

(x^2-x+3)(x^2-4x+3)=0

mà x^2-x+3 =0                                     

 x^2-1/2.2x+1/4-1/4+3=0                     

(x+1/2)^2+11/4 >0( loại)   

Vậy ta còn    

x^2-4x+3=0

 x^2-1x-3x+3=0                 

 (x-1)(x-3)=0

<=> x-1=0 hay x-3=0

       x=1     hay x=3

Vậy S= (1;3)

                 

                                                                

15 tháng 1 2018

a) (x -1)(x-6)(x-5)(x-2)=252

<=>( x^2-7x+6)(x^2-7x+10)=252

Đặt n=x^2-7x+6 ta được :

n(n+4)=252

n^2+4n-252=0

n^2-14n+18n-252=0

n(n-14)+18(n-14)=0

(n+18)(n-14)=0

r tới đây bạn tự giải tiếp nha, mình đánh máy ko quen nên hơi lâu, với bạn tự thêm dấu tương đương nữa, chờ mình câu2

21 tháng 4 2018

bai dai qua

21 tháng 4 2018

a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9

                           (9+x)= -9-x khi 9+x <0 hoặc x <-9

1)pt   9+x=2 với x >_ -9

    <=> x  = 2-9

  <=>  x=-7 thỏa mãn điều kiện (TMDK)

2) pt   -9-x=2 với x<-9

         <=> -x=2+9

             <=>  -x=11

                       x= -11 TMDK

 vậy pt có tập nghiệm S={-7;-9}

các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd

nhu cau o trên mk lam 9+x>_0    hoặc x>_0

với số âm thi -2x>_0  hoặc x <_ 0  nha

23 tháng 2 2021

Mình khuyên bạn thế này : 

Bạn nên tách những câu hỏi ra 

Như vậy các bạn sẽ dễ giúp

Và cũng có nhiều bạn giúp hơn !

23 tháng 2 2021

Bài 1.

a) ( x - 3 )( x + 7 ) = 0

<=> x - 3 = 0 hoặc x + 7 = 0

<=> x = 3 hoặc x = -7

Vậy S = { 3 ; -7 }

b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0

<=> ( x - 2 )( x - 2 + x - 3 ) = 0

<=> ( x - 2 )( 2x - 5 ) = 0

<=> x - 2 = 0 hoặc 2x - 5 = 0

<=> x = 2 hoặc x = 5/2

Vậy S = { 2 ; 5/2 }

c) x2 - 5x + 6 = 0

<=> x2 - 2x - 3x + 6 = 0

<=> x( x - 2 ) - 3( x - 2 ) = 0

<=> ( x - 2 )( x - 3 ) = 0

<=> x - 2 = 0 hoặc x - 3 = 0

<=> x = 2 hoặc x = 3

23 tháng 4 2020

\(\frac{x-2}{x+2}+\frac{3}{x-2}=\frac{x^2-11}{x^2-4}\left(x\ne\pm2\right)\)

\(\Leftrightarrow\frac{x-2}{x+2}+\frac{3}{x-2}-\frac{x^2-11}{x^2-4}=0\)

<=> \(\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{x^2-11}{\left(x-2\right)\left(x+2\right)}=0\)

<=> \(\frac{x^2-4x+4}{\left(x-2\right)\left(x+2\right)}+\frac{3x+6}{\left(x-2\right)\left(x+2\right)}-\frac{x^2-11}{\left(x-2\right)\left(x+2\right)}=0\)

<=> \(\frac{x^2-4x+4+3x+6-x^2+11}{\left(x-2\right)\left(x+2\right)}=0\)

<=> \(\frac{-x+21}{\left(x-2\right)\left(x+2\right)}=0\)

=> -x+21=0

<=> -x=-21

<=> x=21 (tmđk)

Vậy x=21 là nghiệm của pt

23 tháng 4 2020

\(\frac{x}{2x-6}-\frac{2}{2x+2}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\left(x\ne-1;x\ne3\right)\)

<=> \(\frac{x}{2x-6}-\frac{2}{2x+2}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=0\)

<=> \(\frac{x}{2\left(x-3\right)}-\frac{2}{2\left(x+1\right)}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=0\)

<=> \(\frac{\left(x+1\right)^2}{2\left(x+1\right)\left(x-3\right)}-\frac{2\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}-\frac{2x\cdot2}{\left(x+1\right)\left(x-3\right)2}=0\)

<=> \(\frac{x^2+2x+1}{2\left(x+1\right)\left(x-3\right)}-\frac{2x-6}{2\left(x+1\right)\left(x-3\right)}-\frac{4x}{2\left(x+1\right)\left(x-3\right)}=0\)

<=> \(\frac{x^2+2x+1-2x-6-4x}{2\left(x+1\right)\left(x-3\right)}=0\)

<=> \(\frac{x^2-4x-5}{2\left(x+1\right)\left(x-3\right)}=0\)

=> x2-4x-5=0

<=> x2-5x+x-5=0

<=> x(x-5)+(x-5)=0

<=> (x-5)(x+1)=0

\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}}\)

Đối chiếu điều kiện => x=5

Vậy x=5 là nghiệm của pt

29 tháng 1 2018

Hỏi đáp Toán

16 tháng 6 2018

a. Nếu \(x\ge1\)thì: \(\hept{\begin{cases}x+3>0\\x-1\ge0\end{cases}}\)\(\Rightarrow x+3+x-1< 6\Leftrightarrow2x< 4\Leftrightarrow x< 2\)(Loại)

  nếu \(x\le-3\)thì \(\hept{\begin{cases}x+3\le0\\x-1< 0\end{cases}}\)\(\Rightarrow-x-3+1-x< 6\Leftrightarrow-2x< 8\Leftrightarrow x>-4\)\(\Rightarrow-4< x\le-3\)

Nếu \(-3< x< 1\)thì: \(\hept{\begin{cases}x+3>0\\x-1< 0\end{cases}}\)\(\Rightarrow x+3+1-x< 6\Leftrightarrow4< 6\)(luôn đúng)