\(\frac{1}{x}\)= x2 + \(\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2018

Đặt x+1/x = a 

=> x^2+1/x^2 = a^2-2

pt trở thành : a = a^2-2

<=> a^2-a-2 = 0

<=> (a^2+a)-(2a+2) = 0

<=> (a+1).(a-2) = 0

<=> a+1=0 hoặc a-2=0

<=> a=-1 hoặc a=2

<=> x+1/x = -1 hoặc x+1/x = 2

Đến đó bạn tự giải nha

Tk mk nha

25 tháng 3 2018

\(\frac{x+1}{2011}+\frac{x+2}{2010}=\frac{x+3}{2009}+\frac{x+4}{2008}\Leftrightarrow\frac{x+1}{2011}+1+\frac{x+2}{2010}+1=\frac{x+3}{2009}+1+\frac{x+4}{2008}+1\)

\(\Leftrightarrow\frac{x+1}{2011}+\frac{2011}{2011}+\frac{x+2}{2010}+\frac{2010}{2010}=\frac{x+3}{2009}+\frac{2009}{2009}+\frac{x+4}{2008}+\frac{2008}{2008}\)

\(\Leftrightarrow\frac{x+1+2011}{2011}+\frac{x+2+2010}{2010}=\frac{x+3+2009}{2009}+\frac{x+4+2008}{2008}\)

\(\Leftrightarrow\frac{x+2012}{2011}+\frac{x+2012}{2010}=\frac{x+2012}{2009}+\frac{x+2012}{2008}\)

\(\Leftrightarrow\left(x+2012\right)\left(\frac{1}{2011}+\frac{1}{2010}\right)=\left(x+2012\right)\left(\frac{1}{2009}+\frac{1}{2008}\right)\)

\(\Leftrightarrow\left(x+2012\right)\left(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}=0\right)\) 

mà 1/2011+1/2010-1/2009-1/2008 khác 0 

\(\Rightarrow x+2012=0\Rightarrow x=-2012\)

\(\left(3x-2\right)^2-x\left(9x-2\right)=24\Leftrightarrow9x^2-12x+4-9x^2+2x=24\)

\(\Leftrightarrow-10x+4=24\Leftrightarrow-10x=20\Leftrightarrow x=-2\)

25 tháng 3 2018

1;  Ta có : x+1/2011 + x+2/2010 = x+3/2009 + x+4/ 2008

Suy ra: 2+(x+1/2011 + x+2/2010 ) = 2+( x+3/2009 + x+4/2008)

suy ra ban tach 2=1+1 roi cong 1 voi  tưng phân số  trên nha  sẽ ra kết quả ngay thôi 

2; gợi ý nè : (3x-2)^2 =(3x)^2 + 2*3x*2+2^2

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Bài 1:

1.

\((x^2-6x)^2-2(x-3)^2+2=0\)

\(\Leftrightarrow (x^2-6x)^2-2(x^2-6x+9)+2=0\)

\(\Leftrightarrow (x^2-6x)^2-2(x^2-6x)-16=0\)

Đặt $x^2-6x=a$ thì pt trở thành:

$a^2-2a-16=0$

$\Leftrightarrow a=1\pm \sqrt{17}$

Nếu $a=1+\sqrt{17}$

$\Leftrightarrow x^2-6x=1+\sqrt{17}$

$\Leftrightarrow (x-3)^2=10+\sqrt{17}$

$\Rightarrow x=3\pm \sqrt{10+\sqrt{17}}$

Nếu $a=1-\sqrt{17}$

$\Rightarrow x=3\pm \sqrt{10-\sqrt{17}}$

Vậy.........

2.

$x^4-2x^3+x=2$

$\Leftrightarrow x^3(x-2)+(x-2)=0$

$\Leftrightarrow (x-2)(x^3+1)=0$

$\Leftrightarrow (x-2)(x+1)(x^2-x+1)=0$

Thấy rằng $x^2-x+1=(x-\frac{1}{2})^2+\frac{3}{4}>0$ nên $(x-2)(x+1)=0$

$\Rightarrow x=2$ hoặc $x=-1$

Vậy.......

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Bài 2:

1.

ĐKXĐ: $x\neq 1$. Ta có:

\(x^2+(\frac{x}{x-1})^2=8\)

\(\Leftrightarrow x^2+(\frac{x}{x-1})^2+\frac{2x^2}{x-1}=8+\frac{2x^2}{x-1}\)

\(\Leftrightarrow (x+\frac{x}{x-1})^2=8+\frac{2x^2}{x-1}\)

\(\Leftrightarrow (\frac{x^2}{x-1})^2=8+\frac{2x^2}{x-1}\)

Đặt $\frac{x^2}{x-1}=a$ thì pt trở thành:

$a^2=8+2a$

$\Leftrightarrow (a-4)(a+2)=0$

Nếu $a=4\Leftrightarrow \frac{x^2}{x-1}=4$

$\Rightarrow x^2-4x+4=0\Leftrightarrow (x-2)^2=0\Rightarrow x=2$ (tm)

Nếu $a=-2\Leftrightarrow \frac{x^2}{x-1}=-2$

$x^2+2x-2=0\Rightarrow x=-1\pm \sqrt{3}$ (tm)

Vậy........

2. ĐKXĐ: $x\neq 0; 2$

$(\frac{x-1}{x})^2+(\frac{x-1}{x-2})^2=\frac{40}{49}$

$\Leftrightarrow (\frac{x-1}{x}+\frac{x-1}{x-2})^2-\frac{2(x-1)^2}{x(x-2)}=\frac{40}{49}$

$\Leftrightarrow 4\left[\frac{(x-1)^2}{x(x-2)}\right]^2-\frac{2(x-1)^2}{x(x-2)}=\frac{40}{49}$

Đặt $\frac{(x-1)^2}{x(x-2)}=a$ thì pt trở thành:

$4a^2-2a=\frac{40}{49}$

$\Rightarrow 2a^2-a-\frac{20}{49}=0$

$\Rightarrow a=\frac{7\pm \sqrt{209}}{28}$

$\Leftrightarrow 1+\frac{1}{x(x-2)}=\frac{7\pm \sqrt{209}}{28}$

$\Leftrightarrow \frac{1}{x(x-2)}=\frac{-21\pm \sqrt{209}}{28}$

$\Rightarrow x(x-2)=\frac{28}{-21\pm \sqrt{209}}$

$\Rightarrow (x-1)^2=\frac{7\pm \sqrt{209}}{-21\pm \sqrt{209}}$.

Dễ thấy $\frac{7+\sqrt{209}}{-21+\sqrt{209}}< 0$ nên vô lý

Do đó $(x-1)^2=\frac{7-\sqrt{209}}{-21-\sqrt{209}}$

$\Leftrightarrow x=1\pm \sqrt{\frac{7-\sqrt{209}}{-21-\sqrt{209}}}$

Vậy........

16 tháng 4 2017

mình sẽ giải câu 3 cho bạn nhé

đề bài=> \(\frac{1}{x^2+4x+5x+20}+\frac{1}{x^2+5x+6x+30}+\frac{1}{x^2+6x+7x+42}=\frac{1}{18}\)

\(\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-...-\frac{1}{x+7}=\frac{1}{18}\)

\(\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)

\(18\left(x+7\right)-18\left(x+4\right)=\left(x+7\right)\left(x+4\right)\)

\(\left(x+13\right)\left(x-2\right)=0\)

\(\orbr{\begin{cases}x=-13\\x=2\end{cases}}\)

nhớ thank mk nhé

16 tháng 4 2017

câu 5 nà

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

<=>\(1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\ge9\)

<=>\(3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge9\)

<=>\(3+2+2+2\ge9\)(bất đẳng thức luôn đúng)

=> điều phải chứng minh

12 tháng 7 2020

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$###############################@@@@@@@@@@@@@@@@@@@@@@@$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$###############################@@@@@@@@@@@@@@@@@@@@@@@

12 tháng 7 2020

\(x^2-4x+\frac{1}{x+1}+2=-x^2-5x+\frac{1}{2x+1}\left(ĐK:x\ne-1;-\frac{1}{2}\right)\)

\(< =>x^2-4x+\frac{1}{x+1}+2+x^2+5x-\frac{1}{2x+1}=0\)

\(< =>2x^2+x+\frac{2x+3}{x+1}-\frac{1}{2x+1}=0\)

\(< =>2x^2+x=\frac{1}{2x+1}-\frac{2x+3}{x+1}\)

\(< =>2x^2+x=\frac{x+1-\left(2x+1\right)\left(2x+1\right)+4x+2}{\left(x+1\right)\left(x+1\right)+x^2+x}\)

\(< =>2x^2+x=\frac{x+1-4x^2-4x-1+4x+2}{x^2+2x+1+x^2+x}\)

\(< =>2x^2+x=\frac{x-4x^2+2}{2x^2+3x+1}\)

\(< =>\left(2x^2+x\right)^2+\left(2x+1\right)^2x=x-4x^2+2\)

\(< =>4x^4+8x^3+9x^2-2=0\)

nhờ bạn nào đó giải giúp ạ

21 tháng 4 2017

a) Ta có: \(x^3-6x^2+11x-6=0\)

\(\Leftrightarrow x^3-x^2-5x^2+5x+6x-6=0\)

\(\Leftrightarrow x^2\left(x-1\right)-5x\left(x-1\right)+6\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-5x+6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\x-2=0\\x-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\x=2\\x=3\end{cases}}\)

Vậy nghiệm của phương trình là {1;2;3}

Mình đang bận. Câu 2 tí nữa giải quyết sau...

21 tháng 4 2017

nhầm a) \(\frac{10}{x-2}\)\(\frac{x^2-16}{\left(x-2\right)\left(x+1\right)}\)\(\frac{5}{x+1}\)

28 tháng 3 2018

       \(2x-2=8-3x\)

\(\Leftrightarrow\)\(2x+3x=8+2\)

\(\Leftrightarrow\)\(5x=10\)

\(\Leftrightarrow\)\(x=2\)

Vậy...

         \(x^2-3x+1=x+x^2\)

\(\Leftrightarrow\)\(x^2-3x-x-x^2=-1\)

\(\Leftrightarrow\)\(-4x=-1\)

\(\Leftrightarrow\)\(x=\frac{1}{4}\)

Vậy...

28 tháng 3 2018

mấy cái này bấm máy tính là đc òi. giải mất thời gian lắm :))

22 tháng 3 2022

\(\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+...+\frac{1}{x^2+15x+56}=\frac{1}{14}\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+...+\frac{1}{\left(x+7\right)\left(x+8\right)}=\frac{1}{14}\)

\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+...+\frac{1}{x+7}-\frac{1}{x+8}=\frac{1}{14}\)

\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+8}=\frac{1}{14}\)

Làm nốt

22 tháng 3 2022

2/ 

\(T=8x^2-4x+\frac{1}{4x^2}+15\)

\(=\left(4x^2-4x+1\right)+\left(4x^2+\frac{1}{4x^2}-2\right)+16\)

\(=\left(2x-1\right)^2+\left(\frac{4x^2-1}{2x}\right)^2+16\ge16\)