Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình khuyên bạn thế này :
Bạn nên tách những câu hỏi ra
Như vậy các bạn sẽ dễ giúp
Và cũng có nhiều bạn giúp hơn !
Bài 1.
a) ( x - 3 )( x + 7 ) = 0
<=> x - 3 = 0 hoặc x + 7 = 0
<=> x = 3 hoặc x = -7
Vậy S = { 3 ; -7 }
b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0
<=> ( x - 2 )( x - 2 + x - 3 ) = 0
<=> ( x - 2 )( 2x - 5 ) = 0
<=> x - 2 = 0 hoặc 2x - 5 = 0
<=> x = 2 hoặc x = 5/2
Vậy S = { 2 ; 5/2 }
c) x2 - 5x + 6 = 0
<=> x2 - 2x - 3x + 6 = 0
<=> x( x - 2 ) - 3( x - 2 ) = 0
<=> ( x - 2 )( x - 3 ) = 0
<=> x - 2 = 0 hoặc x - 3 = 0
<=> x = 2 hoặc x = 3
1, \(_{\left|x^2-5x-6\right|=x^2+x-24}\) (1)
Điều kiện \(x^2+x-24\ge0\) <=> \(\orbr{\begin{cases}x\ge\frac{-1+\sqrt{97}}{2}\\x\le\frac{-1-\sqrt{97}}{2}\end{cases}}\)
Khi đó (1) <=> \(\orbr{\begin{cases}x^2-5x-6=x^2+x-24\\x^2-5x-6=-x^2-x+24\end{cases}}\)
<=> \(\orbr{\begin{cases}-6x=-18\\2x^2-4x-30=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=3\\x^2-2x-15=0\end{cases}}\)
<=> \(x\in\left\{-3;3;5\right\}\)
Loại 2 giá trị x = -3 và x = 3 do ko t/m đk bên trên, ta đc x = 5 là nghiệm duy nhất của pt
Vậy tập nghiệm của pt là S = {5}
|x^2-5x-6|=x^2+x-24
=>x= 5
|x-1|-2|x-2|+3|x-3|=4
=> x= 5 hoac bang 1
a) quá dài
b)<=>x^2+2x+1=90
=>x^2+2x-89=0
áp dụng denta
=>2^2-(-4(1.89))=360
\(\Rightarrow x_{1,2}=\frac{-b+-\sqrt{\Delta}}{2a}=\frac{-2+-\sqrt{360}}{2}\)
=>x=\(+-3\sqrt{10}-1\)
\(x-5=\frac{1}{3\left(x+2\right)}\left(đkxđ:x\ne-2\right)\)
\(< =>3\left(x-5\right)\left(x+2\right)=1\)
\(< =>3\left(x^2-3x-10\right)=1\)
\(< =>x^2-3x-10=\frac{1}{3}\)
\(< =>x^2-3x-\frac{31}{3}=0\)
giải pt bậc 2 dễ r
\(\frac{x}{3}+\frac{x}{4}=\frac{x}{5}-\frac{x}{6}\)
\(< =>\frac{4x+3x}{12}=\frac{6x-5x}{30}\)
\(< =>\frac{7x}{12}=\frac{x}{30}< =>12x=210x\)
\(< =>x\left(210-12\right)=0< =>x=0\)
(x-1)(x2+2x-6)=x3-1
<=> x3 + 2x2 - 6x - x2 - 2x + 6 = x3 - 1
<=> x3 + 2x2 - 6x - x2 - 2x + 6 - x3 + 1 = 0
<=> x2 - 8x + 7 = 0
<=> x2 - x - 7x + 7 = 0
<=> ( x - 1 )( x - 7 ) = 0
Giải nốt
\(\left(x-1\right)\left(x^2+2x-6\right)=x^3-1\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+2x-6\right)-\left(x^3-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+2x-6\right)-\left(x-1\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\left(x^2+2x-6\right)-\left(x^2+x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+2x-6-x^2-x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-7\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;7\right\}\)
a, \(x-5=\frac{1}{3}\left(x+2\right)\)
\(\Leftrightarrow\frac{3x-15}{3}=\frac{x+2}{3}\Leftrightarrow\frac{3x-15-x-2}{3}=0\)
\(\Leftrightarrow2x-17=0\Leftrightarrow x=\frac{17}{2}\)
b, \(\frac{x}{3}+\frac{x}{4}=\frac{1}{5}-\frac{x}{6}\)
\(\Leftrightarrow\frac{2x}{6}+\frac{x}{6}=\frac{4}{20}-\frac{5x}{20}\Leftrightarrow\frac{x}{2}=\frac{4-5x}{20}\)
\(\Leftrightarrow\frac{10x}{20}-\frac{4-5x}{20}=0\Leftrightarrow15x-4=0\Leftrightarrow x=\frac{4}{15}\)
a, x - 5 = \(\frac{1}{3}\).(x + 2)
<=> x - 5 = \(\frac{1}{3}\)x + \(\frac{2}{3}\)
<=> x - 5 - \(\frac{1}{3}\)x - \(\frac{2}{3}\)= 0
<=>\(\frac{2}{3}\)x - \(\frac{17}{3}\)= 0
<=>x = \(\frac{17}{2}\)
\(a,\Leftrightarrow5\left(x-2\right)-15x\le9+10\left(x+1\right)\)
\(\Leftrightarrow5x-10-15x\le9+10x+10\)
\(\Leftrightarrow-20x\le29\)
\(\Leftrightarrow x\ge-1,45\)
Vậy ...........
\(b,\Rightarrow\left(x+2\right)-3\left(x-3\right)=5\left(x-2\right)\)
\(\Leftrightarrow x+2-3x+9-5x+10=0\)
\(\Leftrightarrow-7x+21=0\)
\(\Leftrightarrow x=3\)
Vậy ..............
\(\frac{x-2}{6}-\frac{x}{2}\le\frac{3}{10}+\frac{x+1}{3}\Leftrightarrow\frac{5\left(x-2\right)}{30}-\frac{15x}{30}\le\frac{9}{30}+\frac{10\left(x+1\right)}{30}\)
\(\Leftrightarrow5x-10-15x-9-10x-10\le0\)
\(\Leftrightarrow-20x-29\le0\Leftrightarrow\left(-20x\right)\cdot\frac{-1}{20}\ge29\cdot-\frac{1}{20}\)
\(\Leftrightarrow x\ge-\frac{29}{20}\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x+2\right)\left(x-6\right)-34=0\)
\(\Leftrightarrow\left(x^2-4x+3\right)\left(x^2-4x-12\right)-34=0\)
Đặt \(x^2-4x-12=t\)
\(\left(t+15\right)t-34=0\Leftrightarrow t^2+15t-34=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-17\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-4x-12=2\\x^2-4x-12=-17\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-4x-14=0\\x^2-4x+5=0\end{matrix}\right.\)
kết quả là j cụ thể ??