Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Với mọi $x$ thuộc ĐKXĐ, ta luôn có:
\(\left\{\begin{matrix} \sqrt{3x+x^2+\frac{9}{4}}\geq 0\\ \sqrt{x^2+3x+1}\geq 0\end{matrix}\right.\)
Do đó, để \(\sqrt{3x+x^2+\frac{9}{4}}+\sqrt{x^2+3x+1}=0\) thì:
\(\left\{\begin{matrix} \sqrt{3x+x^2+\frac{9}{4}}= 0\\ \sqrt{x^2+3x+1}=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x=\frac{-3}{2}\\ x=\frac{3\pm \sqrt{5}}{2}\end{matrix}\right.\) (vô lý)
Do đó pt vô nghiệm.
nếu dòng cuối tìm đc x là cùng 1 số thì số đó là nghiệm của pt đúng ko ạ?
Ta có:\(x\left(x^2+x+1\right)=4y\left(y-1\right)\) (*)
\(\Leftrightarrow x^3+x^2+x+1=4y^2-4y+1\)
\(\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=\left(2y-1\right)^2\) \(\left(1\right)\)
Gọi \(d\inƯC\left(x+1;x^2+1\right)\)với \(d\in Z\)
\(\Rightarrow\hept{\begin{cases}x+1⋮d\\x^2+1⋮d\end{cases}\Rightarrow x^2+1-x\left(x+1\right)⋮d}\)
\(\Rightarrow1-x⋮d\)
\(\Rightarrow1-x+x+1⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Mà \(\left(2y-1\right)^2\)là số chính phương lẻ nên x+1 và x2+1 cũng là số lẻ
\(\Rightarrow d=\pm1\)
\(\Rightarrow x+1\)và \(x^2+1\)nguyên tố cùng nhau
Do đó để phương trình có nghiệm thì x+1 và x2+1 cũng là số chình phương
Giả sử: + \(x^2+1=m^2\)
\(\Rightarrow m^2-x^2=1\)
\(\Rightarrow x=0\)(bạn tự tính)
+\(x+1=n^2\)
\(\Rightarrow x=0\)(bạn tự tính)
Thay x=0 vào phương trình (*)=> y=-1;0
Vậy.......
Áp dụng BĐT:\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
Ta có: \(\left|\sqrt{x-1}+2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}+2+3-\sqrt{x-1}\right|=5\)
Dấu \(=\)xảy ra khi \(AB\ge0\)
dat \(\sqrt{x-1}\) = t
ta có: \(\sqrt{x+3+4t}\)+ \(\sqrt{x+8-6t}\)= 5
x + 3 + 4t + x + 8 - 6t = 25
2x - 2t = 14 ( chia cả 2 vế cho 2)
x - t = 7
t = x - 7
thay t = \(\sqrt{x}-1\)vào ta được:
x - 7 = \(\sqrt{x-1}\)
( x - 7 )2 = x - 1
x2 -14x + 49 = x - 1
x2 - 15x + 50 = 0
k biết đúng hay k
a.
\(\sqrt{4x^2+4x+1}-\sqrt{25x^2+10x+1}=0\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}-\sqrt{\left(5x+1\right)^2}=0\)
\(\Leftrightarrow2x+1-\left(5x+1\right)=0\)
\(\Leftrightarrow-3x=0\Leftrightarrow x=0\)
b.
\(\sqrt{x^4-16x^2+64}=\sqrt{25x^2+10x+1}\)
\(\Leftrightarrow\sqrt{\left(x^2-8\right)^2}=\sqrt{\left(5x+1\right)^2}\)
\(\Leftrightarrow x^2-8=5x+1\)
\(\Leftrightarrow x^2-5x+\dfrac{25}{4}=\dfrac{61}{4}\)
\(\Leftrightarrow\left(x-\dfrac{5}{2}\right)^2=\dfrac{61}{4}\)
............................
tương tự ..
c: \(\Leftrightarrow\sqrt{x-5}\left(\sqrt{x+5}-1\right)=0\)
=>x-5=0 hoặc x+5=1
=>x=-4 hoặc x=5
d: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)
=>2x+3=0 hoặc 2x-3=4
=>x=7/2 hoặc x=-3/2
e: \(\Leftrightarrow\sqrt{x-2}\left(1-3\sqrt{x+2}\right)=0\)
=>x-2=0 hoặc 3 căn x+2=1
=>x=2 hoặc x+2=1/9
=>x=-17/9 hoặc x=2
\(\Leftrightarrow\dfrac{x+3+x-1+2\sqrt{\left(x+3\right)\left(x-1\right)}}{x+3-x+1}=\dfrac{13-x^2}{4}\)
\(\Leftrightarrow2x+2+2\sqrt{\left(x+3\right)\left(x-1\right)}=13-x^2\)
\(\Leftrightarrow\sqrt{4\left(x+3\right)\left(x-1\right)}=13-x^2-2x-2=-x^2-2x+11\)
=>\(x\simeq1,37\)
\(\sqrt{x}-\sqrt{x+1}-\sqrt{x+4}+\sqrt{x+9}=0;ĐK:x\ge4\)
\(\Leftrightarrow\sqrt{x}+\sqrt{x+9}=\sqrt{x+1}-\sqrt{x+4}\)
\(\Leftrightarrow2x+9+2\sqrt{x^2+9x}=2x-5+2\sqrt{x^2-5x+4}\)
\(\leftrightarrow14+2\sqrt{x^2+9x}=2\sqrt{x^2-5x+4}\leftrightarrow7+\sqrt{x^2+9x}=\sqrt{x^2-5x+4}\)
\(\leftrightarrow49+14\sqrt{x^2+9x}+x^2+9x=x^2-5x+4\)
\(\leftrightarrow14\sqrt{x^2+9x}=-14x-45\)
\(\leftrightarrow\hept{\begin{cases}196.x^2+9x=196x^2+1260x+2025\\-14x-45\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}504x=2025\\x\le\frac{-45}{14}\end{cases}\leftrightarrow x=\frac{225}{56}}\) loại
-> PT vô nghiệm