Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trước hết ta c/m BĐT: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
Thật vây, BĐT tương đương: \(a^2+2ab+b^2\le2a^2+2b^2\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Vậy \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\Rightarrow a+b\le\sqrt{2\left(a^2+b^2\right)}\)
Áp dụng:
\(A\le\sqrt{2\left(9-x+x-1\right)}=\sqrt{2.8}=4\)
\(A_{max}=4\)
\(9\left(\sqrt{4x+1}-\sqrt{3x-2}\right)=x+3\)
\(\Leftrightarrow\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{9}\)
\(\Leftrightarrow\frac{x+3}{\sqrt{4x+1}+\sqrt{3x-2}}=\frac{x+3}{9}\)
\(\Leftrightarrow\left(x+3\right)\left(\frac{1}{\sqrt{4x+1}+\sqrt{3x-2}}-\frac{1}{9}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\\sqrt{4x+1}+\sqrt{3x-2}=9\end{cases}}\)
Phần còn lại b làm tiếp nhé
cho mình hỏi hai ý đầu thôi, hai ý sau mình giải ra rồi. Thanks Zero ~
b/ Xác định điều kiện xác định ta có
\(\hept{\begin{cases}2-x^2+2x\ge0\\-7x-8\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}1-\sqrt{3}\le x\le1+\sqrt{3}\\x\le\frac{-8}{7}\end{cases}}\)
=> Tập xác định của phương trình là tập rỗng nên phương trình vô nghiệm
Cái đề đúng không thế cháu hình như bị vô nghiệm hết cả 2 bài luôn
1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)
Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)
2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)
\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)
\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)
\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)
Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)
\(\Rightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\left(tm\right)\)
Vậy pt có no x=2
1) chả biết nên làm thế nào nữa, đinh chỉ xét dấu thôi là xong, nhưng đang ám ảnh bài giống giống này bị sai
2) Tìm đkxđ --> bình phương 2 vế --> bấm máy tính giải pt bậc 2 --> kl
3) giống câu 2
4) + ĐK: \(x^2-8x+16\ge0\)
pt đã cho \(\Leftrightarrow\left[{}\begin{matrix}\left|x-4\right|+\left|x+2\right|=0\\\left|4-x\right|+\left|x+2\right|=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\end{matrix}\right.\) (vô lý)
Kl: ptvn
\(\sqrt{4x^2-4x+9}=3\\ \Rightarrow4x^2-4x+9=9\\ \Rightarrow4x\left(x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}4x=0\\x-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Ta có: \(\sqrt{4x^2-4x+9}=3\)
\(\Leftrightarrow4x^2-4x=0\)
\(\Leftrightarrow4x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)