![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Leftrightarrow2sin\frac{x}{2}cos\frac{x}{2}+\sqrt{3}sin\frac{x}{2}=0\)
\(\Leftrightarrow sin\frac{x}{2}\left(2cos\frac{x}{2}+\sqrt{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\frac{x}{2}=0\\cos\frac{x}{2}=-\frac{\sqrt{3}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{x}{2}=k\pi\\\frac{x}{2}=\pm\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm\frac{5\pi}{3}+k4\pi\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
5 chữ số pb muốn có tổng lẻ thì số chữ số lẻ phải lẻ
Tập đã cho chỉ có 4 chữ số lẻ nên có 2 TH xảy ra: (3 lẻ 2 chẵn) và (1 lẻ 4 chẵn)
Chọn khá dễ dàng
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^3x\)
\(\Rightarrow\frac{sinx}{cosx}.\frac{1}{cos^2x}+\frac{1}{cos^2x}-4tan^3x=0\)
\(\Leftrightarrow tanx\left(1+tan^2x\right)+1+tan^2x-4tan^3x=0\)
Đến đây chắc là ko cần làm nữa
![](https://rs.olm.vn/images/avt/0.png?1311)
d.
\(\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=\sqrt{2}\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=1\)
\(\Leftrightarrow x+\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\frac{\pi}{4}+k2\pi\)
e.
\(\Leftrightarrow cosx.cos\left(\frac{\pi}{12}\right)-sinx.sin\left(\frac{\pi}{12}\right)=\frac{1}{2}\)
\(\Leftrightarrow cos\left(x+\frac{\pi}{12}\right)=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{12}=\frac{\pi}{3}+k2\pi\\x+\frac{\pi}{12}=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
2.a.
ĐKXĐ: ...
\(\sqrt{3}tanx-\frac{6}{tanx}+2\sqrt{3}-3=0\)
\(\Leftrightarrow\sqrt{3}tan^2x+\left(2\sqrt{3}-3\right)tanx-6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-2\\tanx=\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=arctan\left(-2\right)+k\pi\\x=\frac{\pi}{3}+k\pi\end{matrix}\right.\)
b.
ĐKXĐ: \(x\ne k\pi\)
\(1-sin2x=2sin^2x\)
\(\Leftrightarrow1-2sin^2x-sin2x=0\)
\(\Leftrightarrow cos2x-sin2x=0\)
\(\Leftrightarrow cos\left(2x+\frac{\pi}{4}\right)=0\)
\(\Leftrightarrow...\)
Điều kiện x ≠ kπ ∀ k ∈ Z
Vậy phương trình có tập nghiệm