Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3x^3+6x^2-4x=0\) \(\Leftrightarrow\) \(x\left(3x^2+6x-4\right)=0\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=0\\3x^2+6x-4=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=0\\\left\{{}\begin{matrix}x=\dfrac{-3+\sqrt{21}}{3}\\x=\dfrac{-3-\sqrt{21}}{3}\end{matrix}\right.\end{matrix}\right.\)
vậy phương trình có 2 nghiệm \(x=0;x=\dfrac{-3+\sqrt{21}}{3};x=\dfrac{-3-\sqrt{21}}{3}\)
a) + 2 = x(1 - x)
⇔ x2 – 9 + 6 = 3x – 3x2
⇔ 4x2 – 3x – 3 = 0; ∆ = 57
x1 = , x2 =
b) + 3 = . Điều kiện x ≠ 2, x ≠ 5.
(x + 2)(2 – x) + 3(x – 5)(2 – x) = 6(x – 5)
⇔ 4 – x2 – 3x2 + 21x – 30 = 6x – 30 ⇔ 4x2 – 15x – 4 = 0
∆ = 225 + 64 = 289, √∆ = 17
x1 = , x2 = 4
c) = . Điều kiện: x ≠ -1; x ≠ -2
Phương trình tương đương: 4(x + 2) = -x2 – x + 2
⇔ 4x + 8 = 2 – x2 – x
⇔ x2 + 5x + 6 = 0
Giải ra ta được: x1 = -2 không thỏa mãn điều kiện của ẩn nên phương trình chỉ có một nghiệm x = -3.
a) + 2 = x(1 - x)
⇔ x2 – 9 + 6 = 3x – 3x2
⇔ 4x2 – 3x – 3 = 0; ∆ = 57
x1 = , x2 =
b) + 3 = . Điều kiện x ≠ 2, x ≠ 5.
(x + 2)(2 – x) + 3(x – 5)(2 – x) = 6(x – 5)
⇔ 4 – x2 – 3x2 + 21x – 30 = 6x – 30 ⇔ 4x2 – 15x – 4 = 0
∆ = 225 + 64 = 289, √∆ = 17
x1 = , x2 = 4
c) = . Điều kiện: x ≠ -1; x ≠ -2
Phương trình tương đương: 4(x + 2) = -x2 – x + 2
⇔ 4x + 8 = 2 – x2 – x
⇔ x2 + 5x + 6 = 0
Giải ra ta được: x1 = -2 không thỏa mãn điều kiện của ẩn nên phương trình chỉ có một nghiệm x = -3.
nhớ like nha
a) (3x2 - 7x – 10)[2x2 + (1 - √5)x + √5 – 3] = 0
=> hoặc (3x2 - 7x – 10) = 0 (1)
hoặc 2x2 + (1 - √5)x + √5 – 3 = 0 (2)
Giải (1): phương trình a - b + c = 3 + 7 - 10 = 0
nên
x1 = - 1, x2 = =
Giải (2): phương trình có a + b + c = 2 + (1 - √5) + √5 - 3 = 0
nên
x3 = 1, x4 =
b) x3 + 3x2– 2x – 6 = 0 ⇔ x2(x + 3) – 2(x + 3) = 0 ⇔ (x + 3)(x2 - 2) = 0
=> hoặc x + 3 = 0
hoặc x2 - 2 = 0
Giải ra x1 = -3, x2 = -√2, x3 = √2
c) (x2 - 1)(0,6x + 1) = 0,6x2 + x ⇔ (0,6x + 1)(x2 – x – 1) = 0
=> hoặc 0,6x + 1 = 0 (1)
hoặc x2 – x – 1 = 0 (2)
(1) ⇔ 0,6x + 1 = 0
⇔ x2 = =
(2): ∆ = (-1)2 – 4 . 1 . (-1) = 1 + 4 = 5, √∆ = √5
x3 = , x4 =
Vậy phương trình có ba nghiệm:
x1 = , x2 = , x3 = ,
d) (x2 + 2x – 5)2 = ( x2 – x + 5)2 ⇔ (x2 + 2x – 5)2 - ( x2 – x + 5)2 = 0
⇔ (x2 + 2x – 5 + x2 – x + 5)( x2 + 2x – 5 - x2 + x - 5) = 0
⇔ (2x2 + x)(3x – 10) = 0
⇔ x(2x + 1)(3x – 10) = 0
Hoặc x = 0, x = , x =
Vậy phương trình có 3 nghiệm:
x1 = 0, x2 = , x3 =
\(\Leftrightarrow x-16+\sqrt{x-15}-1=0\)0
\(\Leftrightarrow x-16+\frac{x-16}{\sqrt{x-15}+1}\)= 0
\(\Leftrightarrow\left(x-16\right)\cdot\left(1+\frac{1}{\sqrt{x-15}+1}\right)\)=0
Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=120\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=120\)(*)
Đặt \(a=x^2+5x\)
(*)\(\Leftrightarrow\left(a+4\right)\left(a+6\right)=120\)
\(\Leftrightarrow a^2+10a+24-120=0\)
\(\Leftrightarrow a^2+10a+25-121=0\)
\(\Leftrightarrow\left(a+5\right)^2-11^2=0\)
\(\Leftrightarrow\left(a+5-11\right)\left(a+5+11\right)=0\)
\(\Leftrightarrow\left(a-6\right)\left(a+16\right)=0\)
\(\Leftrightarrow\left(x^2+5x-6\right)\left(x^2+5x+16\right)=0\)
mà \(x^2+5x+16>0\forall x\)
nên \(x^2+5x-6=0\)
\(\Leftrightarrow x^2+6x-x-6=0\)
\(\Leftrightarrow x\left(x+6\right)-\left(x+6\right)=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+6=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=1\end{matrix}\right.\)
Vậy: S={-6;1}
xin lỗi bạn, sai rồi bạn ơi