\(\frac{x-22}{8}+\frac{x-21}{9}+\frac{x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2020

\(\frac{x-22}{8}+\frac{x-21}{9}+\frac{x-20}{10}+\frac{x-19}{11}=4\)

\(=>\frac{x-22}{8}-1+\frac{x-21}{9}-1+\frac{x-20}{10}-1+\frac{x-19}{11}-1=0\)

\(=>\frac{x-30}{8}+\frac{x-30}{9}+\frac{x-30}{10}+\frac{x-30}{11}=0\)

\(=>\left(x-30\right)\left(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}\right)=0\)

Do \(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}\ne0\)

\(=>x-30=0\)

\(=>x=30\)

Vậy nghiệm của phương trình trên là 30 

Học tốt

15 tháng 2 2020

\(\frac{x-22}{8}+\frac{x-21}{9}+\frac{x-20}{10}+\frac{x-19}{11}=4\)

\(\Leftrightarrow\frac{x-22}{8}-1+\frac{x-21}{9}-1+\frac{x-20}{10}-1+\frac{x-19}{11}-1=0\)

\(\Leftrightarrow\frac{x-30}{8}+\frac{x-30}{9}+\frac{x-30}{10}+\frac{x-30}{11}=0\)

\(\Leftrightarrow\left(x-30\right)\left(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}\right)=0\)

Vì \(\left(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}\right)>0\)

\(\Rightarrow x-30=0\)

\(\Rightarrow x=30\)

15 tháng 2 2020

\(\frac{x+19}{3}+\frac{x+13}{5}=\frac{x+7}{7}+\frac{x+1}{9}\)

\(=>\frac{x+19}{3}+3+\frac{x+13}{5}+3=\frac{x+7}{7}+3+\frac{x+1}{9}+3\)

\(=>\frac{x+28}{3}+\frac{x+28}{5}=\frac{x+28}{7}+\frac{x+28}{9}\)

\(=>\frac{x+28}{3}+\frac{x+28}{5}-\frac{x+28}{7}-\frac{x+28}{9}=0\)

\(=>\left(x+28\right)\left(\frac{1}{3}+\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right)=0\)

Do :\(\frac{1}{3}+\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\ne0\)

\(=>x+28=0\)

\(=>x=-28\)

Vậy nghiệm của phương trình trên là : -28

15 tháng 2 2020

Thks nha

1 tháng 4 2020

cái cuối là =-4 nhé!

1 tháng 4 2020

\(\frac{x+2001}{5}+\frac{x+1999}{7}+\frac{x+1997}{9}+\frac{x+1995}{11}=-4\)

\(\Rightarrow\frac{x+2001}{5}+1+\frac{x+1999}{7}+1+\frac{x+1997}{9}+1+\frac{x+1995}{11}+1=0\)

\(\Rightarrow\frac{x+2006}{5}+\frac{x+2006}{7}+\frac{x+2006}{9}+\frac{x+2006}{11}=0\)

\(\Rightarrow\left(x+2006\right)\left(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\frac{1}{11}\right)=0\)

\(\Rightarrow x+2006=0\)vì \(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\frac{1}{11}>0\)

\(\Rightarrow x=-2006\)

\(d,\frac{10x+3}{8}=\frac{7-8x}{12}\)

\(\left(10x+3\right):8=\left(7-8x\right):12\)

\(\left(10x+3\right).\frac{1}{8}=\left(7-8x\right).\frac{1}{12}\)

\(\frac{5}{4}x+\frac{3}{8}=\frac{7}{12}-\frac{8}{12}x\)

\(\frac{5}{4}x+\frac{8}{12}x=\frac{7}{12}-\frac{3}{8}\)

\(\frac{23}{12}x=\frac{5}{24}\)

\(x=\frac{5}{46}\)

6 tháng 3 2020

E mới lớp 6 nên giải sai thì thông cảm ạ UwU

\(b,\frac{x}{10}-\left(\frac{x}{30}+\frac{2x}{45}\right)=\frac{4}{5}\)

\(< =>\frac{9x}{90}-\frac{7x}{90}=\frac{4}{5}\)

\(< =>\frac{x}{45}=\frac{32}{45}\)

\(< =>x=32\)

\(d,\frac{10x+3}{8}=\frac{7-8x}{12}\)

\(< =>\left(10x+3\right).12=\left(7-8x\right).8\)

\(< =>120x+36=56-64x\)

\(< =>184x=56-36=20\)

\(< =>x=\frac{20}{184}=\frac{5}{46}\)

27 tháng 3 2020

\(ĐKXĐ:x\ne2;x\ne4\)

\(\frac{x-3}{x-2}+\frac{x-2}{x-4}=-1\)

\(\Leftrightarrow\frac{\left(x-3\right)\left(x-4\right)+\left(x-2\right)^2}{\left(x-2\right)\left(x-4\right)}=-1\)

\(\Leftrightarrow\frac{x^2-7x+12+x^2-4x+4}{x^2-6x+8}=-1\)

\(\Leftrightarrow2x^2-11x+16=-x^2+6x-8\)

\(\Leftrightarrow3x^2-17x+24=0\)

\(\Leftrightarrow\left(x-3\right)\left(3x-8\right)=0\)

\(\Leftrightarrow x=3;x=\frac{8}{3}\)

Vậy tập nghiệm của phương trình  là \(S=\left\{3;\frac{8}{3}\right\}\)

24 tháng 5 2021

Câu 1a : tự kết luận nhé 

\(2\left(x+3\right)=5x-4\Leftrightarrow2x+6=5x-4\Leftrightarrow-3x=-10\Leftrightarrow x=\frac{10}{3}\)

Câu 1b : \(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)ĐK : \(x\ne\pm3\)

\(\Leftrightarrow x+3-2x+6=5-2x\Leftrightarrow-x+9=5-2x\Leftrightarrow x=-4\)

c, \(\frac{x+1}{2}\ge\frac{2x-2}{3}\Leftrightarrow\frac{x+1}{2}-\frac{2x-2}{3}\ge0\)

\(\Leftrightarrow\frac{3x+3-4x+8}{6}\ge0\Rightarrow-x+11\ge0\Leftrightarrow x\le11\)vì 6 >= 0 

24 tháng 5 2021

1) 2(x + 3) = 5x - 4

<=> 2x + 6 = 5x - 4

<=> 3x = 10

<=> x = 10/3

Vậy x = 10/3 là nghiệm phương trình 

b) ĐKXĐ : \(x\ne\pm3\)

\(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)

=> \(\frac{x+3-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{5-2x}{\left(x-3\right)\left(x+3\right)}\)

=> x + 3 - 2(x - 3) = 5 - 2x

<=> -x + 9 = 5 - 2x

<=> x = -4 (tm) 

Vậy x = -4 là nghiệm phương trình 

c) \(\frac{x+1}{2}\ge\frac{2x-2}{3}\)

<=> \(6.\frac{x+1}{2}\ge6.\frac{2x-2}{3}\)

<=> 3(x + 1) \(\ge\)2(2x - 2)

<=> 3x + 3 \(\ge\)4x - 4

<=> 7 \(\ge\)x

<=> x \(\le7\)

Vậy x \(\le\)7 là nghiệm của bất phương trình 

Biểu diễn

-----------------------|-----------]|-/-/-/-/-/-/>

                           0             7

31 tháng 3 2020

17) \(ĐKXĐ:x\ne1\)

 \(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)

\(\Leftrightarrow\frac{x^2+x+1-3x^2-2x^2+2x}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

\(\Leftrightarrow-4x^2+3x+1=0\)

\(\Leftrightarrow-\left(x-1\right)\left(4x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\4x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\left(ktm\right)\\x=-\frac{1}{4}\left(tm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{1}{4}\right\}\)

18) \(ĐKXĐ:x\ne1\)

 \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)

\(\Leftrightarrow\frac{x^2+x+1+2x^2-5-4x+4}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

\(\Leftrightarrow3x^2-3x=0\)

\(\Leftrightarrow3x\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=1\left(ktm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{0\right\}\)

19) \(ĐKXĐ:\hept{\begin{cases}x\ne2\\x\ne3\\x\ne\frac{1}{2}\end{cases}}\)

 \(\frac{x+4}{2x^3-5x+2}+\frac{x+1}{2x^2-7x+3}=\frac{2x+5}{2x^2-7x+3}\)

\(\Leftrightarrow\frac{x+4}{\left(2x-1\right)\left(x-2\right)}+\frac{x+1}{\left(2x-1\right)\left(x-3\right)}-\frac{2x+5}{\left(2x-1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\frac{x^2+x-12+x^2-x-2-2x^2-x+10}{\left(x-2\right)\left(x-3\right)\left(2x-1\right)}=0\)

\(\Leftrightarrow-x-4=0\)

\(\Leftrightarrow x=-4\)(TM)

Vậy tập nghiệm của phương trình là \(S=\left\{-4\right\}\)

20) \(ĐKXĐ:x\ne0\)

 \(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)

\(\Leftrightarrow\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}-\frac{3}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}=0\)

\(\Leftrightarrow\frac{x\left(x+1\right)\left(x^2-x+1\right)-x\left(x-1\right)\left(x^2+x+1\right)-3}{x\left(x^2+x+1\right)\left(x^2-x+1\right)}=0\)

\(\Leftrightarrow x^4+x-x^4+x-3=0\)

\(\Leftrightarrow2x-3=0\)

\(\Leftrightarrow x=\frac{3}{2}\)(TM)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{3}{2}\right\}\)

14 tháng 1 2016

\(\frac{148-x}{25}+\frac{169-x}{23}+\frac{186-x}{21}+\frac{199-x}{19}=10\)

\(\Leftrightarrow\frac{148-x}{25}-1+\frac{169-x}{23}-2+\frac{186-x}{21}-3+\frac{199-x}{19}-4=0\)

\(\Leftrightarrow\frac{148-x}{25}-\frac{25}{25}+\frac{169-x}{23}-\frac{46}{23}+\frac{186-x}{21}-\frac{63}{21}+\frac{199-x}{19}-\frac{76}{19}=0\)

\(\Leftrightarrow\frac{123-x}{25}+\frac{123-x}{23}+\frac{123-x}{21}+\frac{123-x}{19}=0\)

\(\Leftrightarrow\left(123-x\right).\left(\frac{1}{25}+\frac{1}{23}+\frac{1}{21}+\frac{1}{19}\right)=0\)

\(\Leftrightarrow123-x=0\left(\text{vì }\frac{1}{25}+\frac{1}{23}+\frac{1}{21}+\frac{1}{19}\ne0\right)\)

<=>x=123

Vậy S={123}