Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x+1}{65}+\dfrac{x+3}{63}=\dfrac{x+5}{61}+\dfrac{x+7}{59}\)
\(< =>\left(\dfrac{x+1}{65}+1\right)+\left(\dfrac{x+3}{63}+1\right)=\left(\dfrac{x+5}{61}+1\right)+\left(\dfrac{x+7}{59}+1\right)\)
\(< =>\dfrac{x+66}{65}+\dfrac{x+66}{63}=\dfrac{x+66}{61}+\dfrac{x+66}{59}\)
\(< =>\left(x+66\right)\left(\dfrac{1}{65}+\dfrac{1}{63}-\dfrac{1}{61}-\dfrac{1}{59}\right)=0\)
\(< =>x+66=0< =>x=-66\)
Vậy tập nghiệm của phương trình đã cho là: S={-66}
\(\dfrac{x+29}{31}-\dfrac{x+27}{33}=\dfrac{x+17}{43}-\dfrac{x+15}{45}\)
\(< =>\dfrac{x+60}{31}-\dfrac{x+60}{33}=\dfrac{x+60}{43}-\dfrac{x+60}{45}\)
\(< =>\left(x+60\right)\left(\dfrac{1}{31}-\dfrac{1}{33}-\dfrac{1}{43}+\dfrac{1}{45}\right)=0\)
Mà: \(\dfrac{1}{31}-\dfrac{1}{33}-\dfrac{1}{43}+\dfrac{1}{45}\ne0\)
\(=>x+60=0< =>x=-60\)
Vậy tập nghiệm của phương trình đã cho là: s={-60}
a) \(\dfrac{x+43}{57}+\dfrac{x+46}{54}=\dfrac{x+49}{51}+\dfrac{x+52}{48}\)
\(\left(\dfrac{x+43}{57}+1\right)+\left(\dfrac{x+46}{54}+1\right)=\left(\dfrac{x+49}{51}+1\right)+\left(\dfrac{x+52}{48}\right)\)
\(\dfrac{x+43+57}{57}+\dfrac{x+46+54}{54}-\dfrac{x+49+51}{51}-\dfrac{x+52+48}{48}=0\)
\(\dfrac{x+100}{57}+\dfrac{x+100}{54}-\dfrac{x+100}{51}-\dfrac{x+100}{48}=0\)
\(\left(x+100\right)\left(\dfrac{1}{57}+\dfrac{1}{54}-\dfrac{1}{51}-\dfrac{1}{48}\right)=0\)
Mà \(\dfrac{1}{57}+\dfrac{1}{54}-\dfrac{1}{51}-\dfrac{1}{48}\ne0\)
Nên: \(x+100=0\)
\(x=-100\)
a)\(\frac{3+2x}{2+x}-1=\frac{2-x}{2+x}\) (x khác -2)
\(\Leftrightarrow\frac{3+2x}{2+x}-\frac{2-x}{2+x}=1\)
\(\Leftrightarrow\frac{1+3x}{2+x}=1\)
\(\Leftrightarrow1+3x=2+x\)
\(\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
b) \(\frac{5-2x}{3}+\frac{x^2-1}{3}x-1=\frac{\left(x-2\right)\left(1-3x\right)}{9x-3}\) (x khác 1/3)
\(\Leftrightarrow\frac{x^3-3x+5}{3}+\frac{\left(x-2\right)\left(3x-1\right)}{3\left(3x-1\right)}=1\)
\(\Leftrightarrow\frac{x^2-2x+3}{3}=1\)
\(\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow\left[\begin{matrix}x=0\\x=2\end{matrix}\right.\)
c) \(\frac{1}{\left(3-2x\right)^2}-\frac{4}{\left(3+2x\right)^2}=\frac{3}{9-4x^2}\) (x khác +- 3/2)
\(\Leftrightarrow\frac{\left(3+2x\right)^2}{\left(3+2x\right)^2\left(3-2x\right)^2}-\frac{4\left(3-2x\right)^2}{\left(3+2x\right)^2\left(3-2x\right)^2}=\frac{9}{\left(3+2x\right)^2\left(3-2x\right)^2}\)
\(\Leftrightarrow9+12x+4x^2-4\left(9-12x+4x^2\right)-9=0\)
\(\Leftrightarrow-12x^2+60x-36=0\)
\(\Leftrightarrow-12\left(x^2-5x+3\right)=0\Leftrightarrow x^2-5x+3=0\)
\(\Rightarrow\Delta=b^2-4ac=25-12=13>0\)
\(x_1=\frac{-b+\sqrt{\Delta}}{2ac}=\frac{5+\sqrt{13}}{6}\)
\(x_2=\frac{5-\sqrt{13}}{6}\)
d) \(\frac{1}{x^2+2x+1}=\frac{4}{x+2x^2+x^3}=\frac{5}{2x+2x^2}\)
\(\Leftrightarrow\frac{x^2+2x+1}{1}=\frac{x+2x^2+x^3}{4}=\frac{2x+2x^2}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x^2+2x+1}{1}=\frac{x+2x^2+x^3}{4}=\frac{2x+2x^2}{5}=\frac{x^2+2x+1-\left(x+2x^2+x^3\right)+2x+2x^2}{1-4+5}\)
(dấu bằng thứ nhất của câu d là dấu cộng à???)
\(\Leftrightarrow4\left(5x^2-3\right)+5\left(3x-1\right)< 10x\left(x+3\right)-100\)
\(\Leftrightarrow20x^2-12+15x-5< 10x^2+30x-100\)
\(\Leftrightarrow10x^2-15x+83< 0\)
\(\Leftrightarrow10\left(x-\frac{3}{4}\right)^2+\frac{619}{8}< 0\)
Bất phương trình vô nghiệm
\(\frac{x}{10}+\frac{x-1}{9}+\frac{x-2}{8}+\frac{x-3}{7}+\frac{x-4}{6}+\frac{x-5}{5}=6\)
=> \(\left(\frac{x}{10}-1\right)+\left(\frac{x-1}{9}-1\right)+\left(\frac{x-2}{8}-1\right)+\left(\frac{x-3}{7}-1\right)+\left(\frac{x-4}{6}-1\right)+\left(\frac{x-5}{5}-1\right)=0\)
=> \(\frac{x-10}{10}+\frac{x-10}{9}+\frac{x-10}{8}+\frac{x-10}{7}+\frac{x-10}{6}+\frac{x-10}{5}=0\)
=> \(\left(x-10\right)\left(\frac{1}{10}+\frac{1}{9}+\frac{1}{8}+\frac{1}{7}+\frac{1}{6}+\frac{1}{5}\right)=0\)
=> x - 10 = 0
=> x = 10
\(\dfrac{x+1}{65}+\dfrac{x+3}{63}=\dfrac{x+5}{61}+\dfrac{x+7}{59}\)
\(\Leftrightarrow\dfrac{x+1}{65}+1+\dfrac{x+3}{63}+1=\dfrac{x+5}{61}+1+\dfrac{x+7}{59}+1\)
\(\Leftrightarrow\dfrac{x+66}{65}+\dfrac{x+66}{63}=\dfrac{x+66}{61}+\dfrac{x+66}{59}\)
\(\Leftrightarrow\left(x+66\right)\cdot\left(\dfrac{1}{65}+\dfrac{1}{63}\right)=\left(x+66\right)\cdot\left(\dfrac{1}{61}+\dfrac{1}{59}\right)\)
\(\Rightarrow x=-66\)
Vậy x = -66.
\(\dfrac{x+1}{65}+\dfrac{x+3}{63}=\dfrac{x+5}{61}+\dfrac{x+7}{59}\)
\(\Leftrightarrow\dfrac{x+1}{65}+\dfrac{x+3}{63}-\dfrac{x+5}{61}-\dfrac{x+7}{59}=0\)
\(\Leftrightarrow\left(\dfrac{x+1}{65}+1\right)+\left(\dfrac{x+3}{63}+1\right)-\left(\dfrac{x+5}{61}+1\right)-\left(\dfrac{x+7}{59}+1\right)=0\)\(\Leftrightarrow\dfrac{x+66}{65}+\dfrac{x+66}{63}-\dfrac{x+66}{61}-\dfrac{x+66}{59}=0\)\(\Leftrightarrow\left(x+66\right)\left[\left(\dfrac{1}{65}+\dfrac{1}{63}\right)-\left(\dfrac{1}{61}+\dfrac{1}{59}\right)\right]=0\)Nhận xét : Do \(\dfrac{1}{65}< \dfrac{1}{63}< \dfrac{1}{61}< \dfrac{1}{59}\)
\(\Rightarrow\left(\dfrac{1}{65}+\dfrac{1}{63}\right)-\left(\dfrac{1}{61}+\dfrac{1}{59}\right)< 0\)
Vậy để \(\left(x+66\right)\left[\left(\dfrac{1}{65}+\dfrac{1}{63}\right)-\left(\dfrac{1}{61}+\dfrac{1}{59}\right)\right]=0\)\(\Leftrightarrow x+66=0\Leftrightarrow x=-66\)
Vậy....
tik mik nha !!!