Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)
\(\dfrac{1}{x-1}+\dfrac{1}{x-2}=\dfrac{1}{x+2}+\dfrac{1}{x+1}\)
\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{1}{x+1}=\dfrac{1}{x+2}-\dfrac{1}{x-2}\)
\(\Leftrightarrow\dfrac{2}{\left(x-1\right)\left(x+1\right)}=\dfrac{-4}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\dfrac{2}{x^2-1}=\dfrac{-4}{x^2-4}\)
\(\Leftrightarrow2x^2-8=-4x^2+4\) ( điều kiện \(x\ne\pm1,x\ne\pm2\) )
\(\Leftrightarrow6x^2=12\)
\(\Rightarrow x=\pm\sqrt{2}\)
a )
\(\dfrac{15x}{x^2+3x-4}-1=12\left(\dfrac{1}{x+4}+\dfrac{1}{3x-3}\right)\)
\(\Leftrightarrow\dfrac{15x-\left(x^2+3x-4\right)}{x^2+3x-4}=\dfrac{12}{x+4}+\dfrac{12}{3x-3}\)
\(\Leftrightarrow\dfrac{12x-x^2+4}{x^2+4x-x-4}=\dfrac{48x+12}{\left(x+4\right)\left(3x-3\right)}\)
\(\Leftrightarrow\dfrac{12x-x^2+4}{x\left(x+4\right)-\left(x+4\right)}=\dfrac{48x+12}{3\left(x+4\right)\left(x-1\right)}\)
\(\Leftrightarrow\dfrac{12x-x^2+4}{\left(x+4\right)\left(x-1\right)}=\dfrac{48x+12}{3\left(x+4\right)\left(x-1\right)}\)
\(\Leftrightarrow12x-x^2+4=\dfrac{48x+12}{3}\)
\(\Leftrightarrow12x-x^2+4=16x+4\)
\(\Leftrightarrow x^2+8x=0\)
\(\Delta=b^2-4ac\)
\(\Delta=64\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-8+\sqrt{64}}{2}=0\left(nhận\right)\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-8-\sqrt{64}}{2}=-8\left(loại\right)\end{matrix}\right.\)
Do \(x=-8\) không thỏa mãn phương trình
Vậy \(x=0\)
\(\dfrac{15x}{x^2+3x-4}-1=12\left(\dfrac{1}{x+4}+\dfrac{1}{3x-3}\right)\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-4\\x\ne1\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{15x-x^2-3x+4}{\left(x-1\right)\left(x+4\right)}=12\left(\dfrac{3x-3+x+4}{3\left(x+4\right)\left(x-1\right)}\right)\)
\(\Leftrightarrow\dfrac{3(12x-x^2+4)}{3\left(x-1\right)\left(x+4\right)}=12\left(\dfrac{4x+1}{3\left(x+4\right)\left(x-1\right)}\right)\)
\(\Leftrightarrow-x^2+12x+4=16x+4\)
\(\Leftrightarrow x^2+4x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(n\right)\\x=-4\left(l\right)\end{matrix}\right.\)
Vậy \(S=\left\{0\right\}\)
a) \(\Leftrightarrow\dfrac{15x}{x^2+3x-4}-1=\dfrac{12}{x+4}+\dfrac{4}{x-1}\)
\(\Leftrightarrow\dfrac{15x}{x^2+4x-x-4}-\dfrac{12}{x+4}-\dfrac{4}{x-1}=1\)
\(\Leftrightarrow\dfrac{15x}{\left(x-1\right)\left(x+4\right)}-\dfrac{12}{x+4}-\dfrac{4}{x-1}=1\)
\(\Leftrightarrow\dfrac{15x-12x+12-4x-16}{\left(x-1\right)\left(x+4\right)}=1\)
\(\Leftrightarrow\dfrac{-1}{x-1}=1\)
\(\Leftrightarrow x-1=-1\)
\(\Rightarrow x=0\)
tick cho t vs hik
b) \(\Leftrightarrow\left|x-2\right|+3=5\)
\(\Leftrightarrow\left|x-2\right|=5-3\)
\(\Leftrightarrow\left|x-2\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=2\\x-2=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)
2.a)
\(2x\left(6x-1\right)>\left(3x-2\right)\left(4x+3\right)\)
\(\Leftrightarrow12x^2-2x>12x^2+9x-8x-6\)
\(\Leftrightarrow12x^2-2x-12x^2-9x+8x>6\)
\(\Leftrightarrow-3x>6\)
\(\Leftrightarrow3>\dfrac{6}{-3}\)
\(\Leftrightarrow x< -2\)
Vậy nghiệm của bpt \(S=\left\{-2\right\}\)
2.b)
\(\dfrac{2\left(x+1\right)}{3}-2\ge\dfrac{x-2}{2}\)
\(\Leftrightarrow4\left(x+1\right)-2.6\ge3x-6\)
\(\Leftrightarrow4x+4-12\ge3x-6\)
\(\Leftrightarrow4x-3x\ge-6-4+12\)
\(\Leftrightarrow x\ge2\)
vậy nghiệm của bpt x\(\ge\)2
a) ĐKXĐ: \(x\ne-1,x\ne0\)
Ta có: \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\)
<=> \(\dfrac{x\left(x+3\right)+\left(x-2\right)\left(x+1\right)-2x\left(x+1\right)}{x\left(x+1\right)}=0\)
<=> \(\dfrac{x^2+3x+x^2-x-2-2x^2-2x}{x\left(x+1\right)}=0\)
<=> \(\dfrac{-2}{x\left(x+1\right)}=0\) (vô lí)
=> pt vô nghiệm
b) ĐKXĐ: \(x\ne3,x\ne-2\)
ta có:\(1+\dfrac{x}{3-x}=\dfrac{5x}{\left(x+2\right)\left(3-x\right)}+\dfrac{2}{x+2}\)
<=> \(\dfrac{\left(x+2\right)\left(3-x\right)+x\left(x+2\right)-5x-2\left(3-x\right)}{\left(x+2\right)\left(3-x\right)}=0\)
<=> \(\dfrac{x-x^2+6+x^2+2x-5x-6+2x}{\left(x+2\right)\left(3-x\right)}=0\)
<=> \(\dfrac{0}{\left(x+2\right)\left(3-x\right)}=0\) (luôn đúng)
Vậy pt trên luôn đúng với mọi x khác 3 và -2
a) \(\dfrac{x+3}{x+1}\)+\(\dfrac{x-2}{x}\)=2
(đk: x\(\ne\); x\(\ne\)-1)
<=> \(x^2\)+3x + \(x^2\)-x -2 =\(2x^2\)+2x
<=> 2x -2 =2x
<=>0x=2
=>Pt vô nghiệm.
b) 1+ \(\dfrac{x}{3-x}\)= \(\dfrac{5x}{\left(x+2\right)\left(3-x\right)}\)+\(\dfrac{2}{x+2}\)
(đk:x\(\ne\)3; x\(\ne\)-2)
<=> 3x +6=3x+6
<=>0x=0
=> Pt vô số no.
c)\(\dfrac{3x+2}{3x-2}\)-\(\dfrac{6}{2+3x}\)=\(\dfrac{9x^2}{9x^2-4}\)
(đk: x\(\ne\)\(\pm\)\(\dfrac{2}{3}\))
<=>\((3x+2)^2\)-6(3x-2)=\(9x^2\)
<=>\(9x^2 \)+12x +4 -18x+12=\(9x^2\)
<=>16-6x=0
<=>6x=16
<=> x=\(\dfrac{8}{3}\)(t/m)
Vậy pt có no duy nhất là x=\(\dfrac{8}{3}\)
a, \(6x^2-5x+3=2x-3x\left(3-2x\right)\)
⇔ \(6x^2-5x+3=2x-9x+6x^2\)
⇔ \(6x^2-5x+3-6x^2+9x-2x=0\)
⇔ \(2x+3=0\)
⇔ \(2x=-3\)
⇔ \(x=-\dfrac{3}{2}\)
b, \(\dfrac{2\left(x-4\right)}{4}-\dfrac{3+2x}{10}=x+\dfrac{1-x}{5}\)
⇔ \(\dfrac{20\left(x-4\right)}{4.10}-\dfrac{4\left(3+2x\right)}{4.10}=\dfrac{5x}{5}+\dfrac{1-x}{5}\)
⇔ \(\dfrac{20x-80}{40}-\dfrac{12+8x}{40}=\dfrac{5x+1-x}{5}\)
⇔ \(\dfrac{20x-80-12-8x}{40}=\dfrac{4x+1}{5}\)
⇔ \(\dfrac{12x-92}{40}-\dfrac{4x+1}{5}=0\)
⇔ \(\dfrac{12x-92}{40}-\dfrac{8\left(4x+1\right)}{40}=0\)
⇔ \(12x-92-8\left(4x+1\right)=0\)
⇔ 12x - 92 - 32x - 8 = 0
⇔ -100 - 20x = 0
⇔ 20x = -100
⇔ x = -100 : 20
⇔ x = -5
Theo bài ra , ta có :
\(\dfrac{15x}{x^2+3x-4}-1=12\left(\dfrac{1}{x+4}+\dfrac{1}{3x-3}\right)\)
\(\Leftrightarrow\dfrac{15x}{\left(x-1\right)\left(x+4\right)}-1=12\left(\dfrac{1}{x+4}+\dfrac{1}{3\left(x-1\right)}\right)\)
ĐKXĐ : \(x\ne+1;x\ne-4\)
\(45x-3\left(x-1\right)\left(x+4\right)=36\left(x-1\right)+12\left(x+4\right)\)
\(\Leftrightarrow45x-3x^2-3x+12=36x-36+12x+48\)
\(\Leftrightarrow-3x^2-6x=0\)
\(\Leftrightarrow-3x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(TMĐK\right)\\x=-2\left(TMĐK\right)\end{matrix}\right.\)
Vậy S={0;-2}
làm sao ra (x-1)(x+4)