Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c.
\(4y^2+1=4y\)
\(\Leftrightarrow4y^2-4y+1=0\)
\(\Leftrightarrow4y^2-2y-2y+1=0\)
\(\Leftrightarrow2y\left(2y-1\right)-\left(2y-1\right)=0\)
\(\Leftrightarrow\left(2y-1\right)^2=0\)
\(\Leftrightarrow y=0\)
d.
\(y^2-2y=80\)
\(\Leftrightarrow y^2-2y-80=0\)
\(\Leftrightarrow y^2-10y+8y-80=0\)
\(\Leftrightarrow y\left(y-10\right)+8\left(y-10\right)=0\)
\(\Leftrightarrow\left(y+8\right)\left(y-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y+8=0\\y-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=-8\\y=10\end{matrix}\right.\)
d) Ta có: \(\left(y+3\right)^2\ge0\forall y\)
\(\left(y+5\right)^2\ge0\forall y\)
Do đó: \(\left(y+3\right)^2+\left(y+5\right)^2\ge0\forall y\)
mà \(\left(y+3\right)^2+\left(y+5\right)^2=0\)
nên \(\left\{{}\begin{matrix}\left(y+3\right)^2=0\\\left(y+5\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y+3=0\\y+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-3\\y=-5\end{matrix}\right.\)
Vậy: y=-3 và y=-5
\(2y^3-5y^2+8y-3=4y^2-1\)
\(\Leftrightarrow2y^3-5y^2+8y-3-4y^2+1=0\)
\(\Leftrightarrow2y^3-9y^2+8y-2=0\)
\(\Leftrightarrow2y^3-8y^2-y^2+4y+4y-2=0\)
\(\Leftrightarrow2y^2\left(y-4\right)-y\left(y-4\right)+2\left(2y-1\right)=0\)
\(\Leftrightarrow y\left(y-4\right)\left(2y-1\right)+2\left(2y-1\right)=0\)
\(\Leftrightarrow\left(2y-1\right)\left[y\left(y-4\right)+2\right]=0\)
\(\Leftrightarrow\left(2y-1\right)\left(y^2-4y+2\right)=0\)
\(\Leftrightarrow2y-1=0\) ( vì \(y^2-4y+2\ne0\) )
\(\Leftrightarrow y=\dfrac{1}{2}\)
Vậy pt có nghiệm duy nhất \(y=\dfrac{1}{2}\)