\(-3x^2+8x-2=0\)

Mọi ngừi giải giùm mình vs ạ! Mơn...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 9 2018

Lời giải:

\(-3x^2+8x-2=0\)

\(\Leftrightarrow 3x^2-8x+2=0\)

\(\Leftrightarrow 3(x^2-\frac{8}{3}x+\frac{8^2}{6^2})=\frac{10}{3}\)

\(\Leftrightarrow 3(x-\frac{8}{6})^2=\frac{10}{3}\)

\(\Leftrightarrow (x-\frac{4}{3})^2=\frac{10}{9}\Rightarrow \left[\begin{matrix} x-\frac{4}{3}=\frac{\sqrt{10}}{3}\\ x-\frac{4}{3}=\frac{-\sqrt{10}}{3}\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=\frac{4+\sqrt{10}}{3}\\ x=\frac{4-\sqrt{10}}{3}\end{matrix}\right.\)

1 tháng 9 2018

\(-3x^2+8x-2=0\)

\(\Leftrightarrow-3\left(x^2-\dfrac{8}{3}x+\dfrac{2}{3}\right)=0\)

\(\Leftrightarrow-3\left(x^2-2x.\dfrac{4}{3}+\dfrac{16}{9}-\dfrac{10}{9}\right)=0\)

\(\Leftrightarrow-3\left[\left(x-\dfrac{4}{3}\right)^2-\dfrac{10}{9}\right]=0\)

\(\Leftrightarrow\left(x-\dfrac{4}{3}\right)^2-\dfrac{10}{9}=0\)

\(\Leftrightarrow\left(x-\dfrac{4}{3}\right)^2=\dfrac{10}{9}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{4}{3}=\dfrac{\sqrt{10}}{3}\\x-\dfrac{4}{3}=\dfrac{-\sqrt{10}}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{10}+4}{3}\\x=\dfrac{4-\sqrt{10}}{3}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=\dfrac{\sqrt{10}+4}{3}\\x=\dfrac{4-\sqrt{10}}{3}\end{matrix}\right.\)

13 tháng 7 2016

a) 6x^2-11x+3                              b)2x^2+3x-27                      c)3x^2-8x+4

= 6x^2-2x-9x+3                            =2x^2-6x+9x-27                    =3x^2-6x-2x+4

=2x(3x-1)-3(3x-1)                         =2x(x-3)+9(x-3)                      =3x(x-2)-2(x-2)

=(2x-3)(3x-1)                               =(2x+9)(x-3)                           =(3x-2)(x-2)      

29 tháng 6 2016

\(\Leftrightarrow3x^3-2x^2-6x^2+4x-6x+4=0\)

\(\Leftrightarrow x^2\left(3x-2\right)-2x\left(3x-2\right)-2\left(3x-2\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(x^2-2x-2\right)=0\)

\(\Leftrightarrow x=\frac{2}{3}\)

14 tháng 7 2017

a. \(x^3-x^2-21x+45=0\Rightarrow\left(x^3+5x^2\right)-\left(6x^2+30x\right)+\left(9x+45\right)=0\)

\(\Rightarrow x^2\left(x+5\right)-6x\left(x+5\right)+9\left(x+5\right)=0\)

\(\Rightarrow\left(x+5\right)\left(x-3\right)^2=0\Rightarrow\orbr{\begin{cases}x=-5\\x=3\end{cases}}\)

Vậy x=-5 hoặc x=3

b. \(2x^3-5x^2+8x-3=0\Rightarrow\left(2x^3-x^2\right)-\left(4x^2-2x\right)+\left(6x-3\right)=0\)

\(\Rightarrow x^2\left(2x-1\right)-2x\left(2x-1\right)+3\left(2x-1\right)=0\)

\(\Rightarrow\left(2x-1\right)\left(x^2-2x+3\right)=0\Rightarrow2x-1=0\)do \(x^2-2x+3\ne0\forall x\)

\(\Rightarrow x=\frac{1}{2}\) 

1 tháng 7 2019

Lời giải :

\(A=a^2+ab+b^2-3a-3b+2014\)

\(A=\frac{1}{2}\left(2a^2+2ab+2b^2-6a-6b+4028\right)\)

\(A=\frac{1}{2}\left[\left(a^2+2ab+b^2\right)+\left(a^2-6a+9\right)+\left(b^2-6b+9\right)+4010\right]\)

\(A=\frac{1}{2}\left[\left(a+b\right)^2+\left(a-3\right)^2+\left(b-3\right)^2+4010\right]\)

Dấu "=" không xảy ra nha bạn, bạn xem lại đề

1 tháng 7 2019

Đề đúng bạn ạ

20 tháng 6 2017

b)\(3x^3+6x^2-75x-150=0\Leftrightarrow3\left(x^3+2x^2-25x-50\right)=0\Leftrightarrow x^3+2x^2-25x-50=0\)

<=>\(x^2\left(x+2\right)-25\left(x+2\right)=0\Leftrightarrow\left(x^2-25\right)\left(x+2\right)=0\Leftrightarrow\left(x-5\right)\left(x+5\right)\left(x+2\right)=0\)

<=>x-5=0 hoặc x+5=0 hoặc x+2=0<=>x=5 hoặc x=-5 hoặc x=-2

c)\(2x^5-3x^4+6x^3-8x^2+3=0\Leftrightarrow2x^5+x^4-4x^4-2x^3+8x^3+4x^2-12x^2+3=0\)

<=>\(x^4\left(2x+1\right)-2x^3\left(2x+1\right)+4x^2\left(2x+1\right)-3\left(4x^2-1\right)=0\)

<=>\(x^4\left(2x+1\right)-2x^3\left(2x+1\right)+4x^2\left(2x+1\right)-3\left(2x-1\right)\left(2x+1\right)=0\)

<=>\(\left(2x+1\right)\left(x^4-2x^3+4x^2-6x+3\right)=0\)

<=>\(\left(2x+1\right)\left(x^4-2x^3+x^2+3x^2-6x+3\right)=0\)

<=>\(\left(2x+1\right)\left[x^2\left(x^2-2x+1\right)+3\left(x^2-2x+1\right)\right]=0\)

<=>\(\left(2x+1\right)\left(x^2+3\right)\left(x^2-2x+1\right)=0\Leftrightarrow\left(2x+1\right)\left(x^2+3\right)\left(x-1\right)^2=0\)

Vì \(x^2\ge0\Rightarrow x^2+3\ge3>0\Rightarrow\orbr{\begin{cases}2x+1=0\\\left(x-1\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\)

20 tháng 6 2017

a) 2x3 - x2 - 8x + 4 = 0

x2.(2x - 1) - 4.(2x - 1) = 0

(x2 - 4)(2x - 1) = 0

\(\Rightarrow\orbr{\begin{cases}x^2-4=0\\2x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=4\\x=\frac{1}{2}\end{cases}}\)

Với x2 = 4

=> x = 2 hoặc x = -2

=> x = {-2 ; 2 ; \(\frac{1}{2}\))

5 tháng 6 2019

Ta có : 

\(3x^3-8x^2-2x+4=\left(3x-2\right)\left(x^2-2x-2\right)\)

\(\Leftrightarrow\left(3x-2\right)\left(x^2-2x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\x^2-2x-2=0\end{cases}}\)

Th1 : \(3x-2=0\Leftrightarrow3x=2\Leftrightarrow x=\frac{2}{3}\)

Th2: \(x^2-2x-2=0\)

\(\Leftrightarrow x^2-2x+1=3\)

\(\Leftrightarrow\left(x-1\right)^2=3\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=\sqrt{3}\\x-1=-\sqrt{3}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1+\sqrt{3}\\x=1-\sqrt{3}\end{cases}}}\)

Vậy phương trình có 3 nghiệm : \(x=1\)\(x=1\pm\sqrt{3}\)

5 tháng 6 2019

\(3x^3-8x^2-2x+4=0\)

\(\Leftrightarrow\left(3x-2\right)\left(x^2-2x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\x^2-2x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=1\pm\sqrt{3}\end{cases}}\)

Vậy tập nghiệm của phương trình \(S=\left\{\frac{2}{3};1\pm\sqrt{3}\right\}\)