\(3x^2+4x+10=2\sqrt{14x^2-7}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2018

\(3x^2+4x+10=2\sqrt{14x^2-7}\)

\(\Leftrightarrow2\sqrt{14x^2-7}=3x^2+4x+10\)

\(\Leftrightarrow\left(2\sqrt{14x^2-7}\right)^2=\left(3x^2+4x+10\right)^2\)

\(\Leftrightarrow56x^2-28=9x^4+76x^2+10+24x^3+80x\)\(\Leftrightarrow56x^2-28-9x^4-76x^2-100-24x^3-80x=0\)\(\Leftrightarrow-20x^2-128-9x^4-24x^3-80x=0\)

\(\Leftrightarrow-9x^4-18x^3-6x^3-12x^2-8x^2-16x-64x-128=0\)\(\Leftrightarrow-9x^3\cdot\left(x+2\right)-6x^2\cdot\left(x+2\right)-8x\cdot\left(x+2\right)-64\left(x+2\right)=0\)\(\Leftrightarrow-\left(x+2\right)\cdot\left(9x^3+18x^2+12x^2-24x+32x+64\right)=0\)\(\Leftrightarrow-\left(x+2\right)\cdot\left(9x^2\left(x+2\right)-12x\cdot\left(x+2\right)+32\left(x+2\right)\right)=0\)

\(\Leftrightarrow-\left(x+2\right)^2\cdot\left(9x^2-12x+32\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-\left(x+2\right)^2=0\\9x^2-12x+32=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x\notin R\end{matrix}\right.\)

\(\Leftrightarrow x=-2\)

13 tháng 10 2019

a,đk -1<x<7

x+1+2 căn 7-x-2 căn x+1=căn (x+1)(7-x)

14 tháng 11 2018

ĐKXĐ:  \(\left|x\right|\ge\frac{1}{2}\)

\(3x^2+4x+10=2\sqrt{14x^2-7}\)

<=>  \(2x^2-1-2\sqrt{7\left(2x^2-1\right)}+7+\left(x^2+4x+4\right)=0\)

<=>  \(\left(\sqrt{2x^2-1}-\sqrt{7}\right)^2+\left(x+2\right)^2=0\)

Nhận thấy:  \(\left(\sqrt{2x^2-1}-\sqrt{7}\right)^2\ge0\)    \(\forall x\)t/m ĐKXĐ

                  \(\left(x+2\right)^2\ge0\)   \(\forall x\)

suy ra:   \(\left(\sqrt{2x^2-1}-\sqrt{7}\right)^2+\left(x+2\right)^2\ge0\)

Từ đó, dấu "=" phải xảy ra

Khi đó:   \(\hept{\begin{cases}\sqrt{2x^2-1}-\sqrt{7}=0\\x+2=0\end{cases}}\)  <=>   \(x=-2\)   (t/m)

Vậy...

18 tháng 10 2020

a) ĐK : \(x\ge1\)

pt <=> \(\sqrt{3^2\left(x-1\right)}-\frac{1}{2}\sqrt{2^2\left(x-1\right)}=2\)

<=> \(\left|3\right|\sqrt{x-1}-\frac{1}{2}\cdot\left|2\right|\sqrt{x-1}=2\)

<=> \(3\sqrt{x-1}-1\sqrt{x-1}=2\)

<=> \(2\sqrt{x-1}=2\)

<=> \(\sqrt{x-1}=1\)

<=> \(x-1=1\)=> \(x=2\)( tm )

b) \(3x-\sqrt{49-14x+x^2}=15\)

<=> \(\sqrt{x^2-14x+49}=3x-15\)

<=> \(\sqrt{\left(x-7\right)^2}=3x-15\)

<=> \(\left|x-7\right|=3x-15\)(1)

Với x < 7

(1) <=> 7 - x = 3x - 15

     <=> -x - 3x = -15 - 7

     <=> -4x = -22

     <=> x = 11/2 ( tm )

Với x ≥ 7

(1) <=> x - 7 = 3x - 15

      <=> x - 3x = -15 + 7

      <=> -2x = -8

      <=> x = 4 ( ktm )

Vậy x = 11/2

18 tháng 10 2020

a) \(ĐKXĐ:x\ge1\)

\(\sqrt{9x-9}-\frac{1}{2}\sqrt{4x-4}=2\)

\(\Leftrightarrow\sqrt{9.\left(x-1\right)}-\frac{1}{2}.\sqrt{4\left(x-1\right)}=2\)

\(\Leftrightarrow3\sqrt{x-1}-\frac{1}{2}.2\sqrt{x-1}=2\)

\(\Leftrightarrow3\sqrt{x-1}-\sqrt{x-1}=2\)

\(\Leftrightarrow2\sqrt{x-1}=2\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)\(\Leftrightarrow x=2\)( thỏa mãn ĐKXĐ )

Vậy phương trình có nghiệm là \(x=2\)

b) \(3x-\sqrt{49-14x+x^2}=15\)

\(\Leftrightarrow3x-\sqrt{\left(7-x\right)^2}=15\)

\(\Leftrightarrow3x-\left|7-x\right|=15\)

+) TH1: Nếu \(7-x< 0\)\(\Leftrightarrow x>7\)

thì \(3x-\left(x-7\right)=15\)

\(\Leftrightarrow3x-x+7=15\)\(\Leftrightarrow2x=8\)

\(\Leftrightarrow x=4\)( không thỏa mãn )

+) TH2: Nếu \(7-x\ge0\)\(\Leftrightarrow x\le7\)

thì \(3x-\left(7-x\right)=15\)

\(\Leftrightarrow3x-7+x=15\)

\(\Leftrightarrow4x=22\)\(\Leftrightarrow x=\frac{22}{4}\)( thỏa mãn ĐKXĐ )

Vậy nghiệm của phương trình là \(x=\frac{22}{4}\)

15 tháng 10 2016

b/ Xác định điều kiện xác định ta có

\(\hept{\begin{cases}2-x^2+2x\ge0\\-7x-8\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}1-\sqrt{3}\le x\le1+\sqrt{3}\\x\le\frac{-8}{7}\end{cases}}\)

=> Tập xác định của phương trình là tập rỗng nên phương trình vô nghiệm

15 tháng 10 2016

Cái đề đúng không thế cháu hình như bị vô nghiệm hết cả 2 bài luôn

19 tháng 10 2017

\(Đk:14x^2-7\ge0\Leftrightarrow x\ge\frac{1}{\sqrt{2}};x\le\frac{-1}{\sqrt{2}}\)

Nhận thấy x = –2 là nghiệm của pt , ta phân tích: 

\(3x^2+4x+10-2\sqrt{14x^2-7}=0\)

\(\Leftrightarrow3.x^2+4x+10-2\sqrt{14x^2-7}=0\)

\(\Leftrightarrow3.x+2^2-2.1+4x-\sqrt{14x^2-7}=0\)

\(\Leftrightarrow\frac{3.x+2^2-2.16^2+8x+1-14x^2+7}{1+4x+\sqrt{14x^2-7}}=0\) nhân liên hợp

\(\Leftrightarrow\frac{3.x+2^2-4.x+2^2}{1+4x+\sqrt{14x^2-7}}=0\)

\(\Leftrightarrow x+2^2.\frac{3-4}{1+4x+\sqrt{14x^2-7}}=0\)

+, \(x+2=0\Leftrightarrow x=-2TM\)

+, \(\frac{3-4}{1+4x+\sqrt{14x^2+7}}=0\)

\(\Leftrightarrow1+4x+\sqrt{14x^2-7}=\frac{4}{3}\)

\(\Leftrightarrow\sqrt{14x^2-7}=\frac{1}{3}-4x;Đk\frac{1}{3}-4x\ge0\)

\(\Leftrightarrow14x^2-7=16x^2-\frac{2}{3x}+\frac{1}{9}\)

\(\Leftrightarrow2x^2-\frac{2}{3x}+\frac{64}{9}=0VN\)

Vậy: \(x=2\)

P/s: Tôi mớp lớp 6, sai chỗ nào thì sửa hộ nhé. Thanks

20 tháng 10 2017

 vn la cai gi