\(2\tan x+3\cot x=4\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2017

\(2\tan x+3\cot x=4\)

Điều kiện \(\cos x\ne0\)\(\sin x\ne0\)

Ta có : \(2\tan^2x-4\tan x+3=0\)

Phương trình vô nghiệm đối với \(\tan x\), do đó phương trình vô nghiệm.

17 tháng 5 2017

Phương trình đưa về đa thức của một hàm lượng giác

Phương trình đưa về đa thức của một hàm lượng giác

17 tháng 5 2017

Hàm số lượng giác, phương trình lượng giác

Hàm số lượng giác, phương trình lượng giác

12 tháng 9 2016

tham khảogiúp mình nhé: (tanx + cotx)^2 - (tanx + cotx) = 2? | Yahoo Hỏi & Đáp

31 tháng 3 2017

Bài 5. a) Vì = tan 300 nên

tan (x - 150) = ⇔ tan (x - 150) = tan 300

⇔ x - 150 = 300 + k1800 ⇔ x = 450 + k1800 , (k ∈ Z).

b) Vì -√3 = cot() nên

cot (3x - 1) = -√3 ⇔ cot (3x - 1) = cot()

⇔ 3x - 1 = + kπ ⇔ x =

c) Đặt t = tan x thì cos2x = , phương trình đã cho trở thành

. t = 0 ⇔ t ∈ {0 ; 1 ; -1} .

Vì vậy phương trình đã cho tương đương với

d) sin 3x . cot x = 0 ⇔ .

Với điều kiện sinx # 0, phương trình tương đương với

sin 3x . cot x = 0 ⇔

Với cos x = 0 ⇔ x = + kπ, k ∈ Z thì sin2x = 1 – cos2x = 1 – 0 = 1 => sinx # 0, điều kiện được thỏa mãn.

Với sin 3x = 0 ⇔ 3x = kπ ⇔ x = , (k ∈ Z). Ta còn phải tìm các k nguyên để x = vi phạm điều kiện (để loại bỏ), tức là phải tìm k nguyên sao cho sin = 0, giải phương trình này (với ẩn k nguyên), ta có

sin = 0 ⇔ = lπ, (l ∈ Z) ⇔ k = 3l ⇔ k : 3.

Do đó phương trình đã cho có nghiệm là x = + kπ, (k ∈ Z) và x = (với k nguyên không chia hết cho 3).

18 tháng 5 2017

a) \(x=-45^0+k90^0,k\in\mathbb{Z}\)

b) \(x=-\dfrac{\pi}{6}+k\pi,k\in\mathbb{Z}\)

c) \(x=\dfrac{3\pi}{4}+k2\pi,k\in\mathbb{Z}\)

d) \(x=300^0+k540^0,k\in\mathbb{Z}\)

17 tháng 5 2017

Đối với những phương trình lượng giác chứa \(\tan x,\cot x,\sin2x\) hoặc \(\cos2x\) ta có thể đưa về phương trình chứa \(\cos x,\sin x,\sin2x\) hoặc \(\cos2x\). Ngoài ra ta có thể đặt ẩn phụ \(t=\tan x\) để đưa về phương trình theo t :

Hàm số lượng giác, phương trình lượng giác

Hàm số lượng giác, phương trình lượng giác

18 tháng 5 2017

bổ sung cho bạn kia cái đk
đk: sin2x # 0
<=> 2x # kπ
<=> x # kπ/2
4cos^2(2x) - 2cos2x - 2 = 0
tới đây giải tiếp sẽ ra 2 nghiệm là
cos2x = 1 hoặc cos2x = -1/2
nghiệm cos2x = 1 loại vì cos2x = 1 thì sin2x = 0 ( mâu thuẫn với điều kiện ) ai không hiểu thì vẽ cái đường tròn ra là biết ngay

17 tháng 5 2017

Phương trình đưa về đa thức của một hàm lượng giác

Phương trình đưa về đa thức của một hàm lượng giác

6 tháng 9 2016

a) Trên hình là đô thị hàm số y = tanx , đường y = - 1 , y = 0 ( chính là trục x'Ox ) . ( thiếu hình vẽ )

Các điểm \(\left(-\frac{\pi}{4};-1\right);\left(\frac{3\pi}{4};-1\right)...\) là các điểm có hoành độ là nghiệm của phương trình tanx = - 1 . Các điểm \(\left(-\pi;0\right),\left(0;0\right),\left(\pi;0\right)\) , là các điểm có hoành độ là nghiệm của phương trình tanx = 0

b) Học sinh tự vẽ đô thị hàm số y = cotx và chỉ ra các điểm có hoành độ là nghiệm của phương cotx = \(\frac{\sqrt{3}}{3};cotx=1\)

8 tháng 9 2016

b)đề là \(tan\left(x-15^0\right)=\frac{\sqrt{3}}{3}\)

Vì \(\frac{\sqrt{3}}{3}=tan30^0\) nên

\(\Leftrightarrow tan\left(x-15^0\right)=tan30^0\)

\(\Leftrightarrow x-15^0=30^0+k180^0\)

\(\Leftrightarrow x=45^0+k180^0\left(k\in Z\right)\)

8 tháng 9 2016

Đk:\(sin3x\ne0\) và \(cos\frac{2\pi}{5}\ne0\)

\(\Leftrightarrow\frac{cos3x}{sin3x}-\frac{sin\frac{2\pi}{5}}{cos\frac{2\pi}{5}}=0\)

\(\Leftrightarrow cos3x\cdot cos\frac{2\pi}{5}-sin\frac{2\pi}{5}\cdot sin3x=0\)

\(\Leftrightarrow cos\left(3x+\frac{2\pi}{5}\right)=0\)

\(\Leftrightarrow3x+\frac{2\pi}{5}=\frac{\pi}{2}+k\pi\)

\(\Leftrightarrow x=\frac{\pi}{30}+\frac{k\pi}{3}\)