Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+x+m-2=0\)
\(a,m=0\)
\(\Rightarrow x^2+x-2=0\)
\(\Rightarrow\hept{\begin{cases}x=1\\x=-2\end{cases}}\)
Vậy m=0 thì pt có 2 nghiệm x=1 và x=-2
a, Thay m = 0 vào phương trình trên ta được :
\(x^2+x-2=0\)
Ta có : \(\Delta=1+8=9\)
\(x_1=\frac{-1-3}{2}=-2;x_2=\frac{-1+3}{2}=1\)
Vậy m = 0 thì x = -2 ; x = 1
b, Theo Vi et \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-1\\x_1x_2=\frac{c}{a}=m-2\end{cases}}\)
mà \(\left(x_1+x_2\right)^2=1\Leftrightarrow x_1^2+x_2^2=1-2x_1x_2=2m-3\)
hay bất phương trình trên tương đương :
\(2m-3-3\left(m-2\right)< 1\)
\(\Leftrightarrow2m-3-3m+6< 1\Leftrightarrow-m+3< 1\)
\(\Leftrightarrow-m< -2\Leftrightarrow m>2\)
a: \(\Leftrightarrow x^2-3x+\dfrac{9}{4}=\dfrac{5}{4}\)
=>(x-3/2)2=5/4
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{2}=\dfrac{\sqrt{5}}{2}\\x-\dfrac{3}{2}=-\dfrac{\sqrt{5}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{5}+3}{2}\\x=\dfrac{-\sqrt{5}+3}{2}\end{matrix}\right.\)
b: \(x^2+\sqrt{2}x-1=0\)
nên \(x^2+2\cdot x\cdot\dfrac{\sqrt{2}}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)
\(\Leftrightarrow\left(x+\dfrac{\sqrt{2}}{2}\right)^2=\dfrac{3}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\sqrt{2}}{2}=\dfrac{\sqrt{6}}{2}\\x+\dfrac{\sqrt{2}}{2}=-\dfrac{\sqrt{6}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{6}-\sqrt{2}}{2}\\x=\dfrac{-\sqrt{6}-\sqrt{2}}{2}\end{matrix}\right.\)
c: \(5x^2-7x+1=0\)
\(\Leftrightarrow x^2-\dfrac{7}{5}x+\dfrac{1}{5}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{10}+\dfrac{49}{100}=\dfrac{29}{100}\)
\(\Leftrightarrow\left(x-\dfrac{7}{10}\right)^2=\dfrac{29}{100}\)
hay \(x\in\left\{\dfrac{\sqrt{29}+7}{10};\dfrac{-\sqrt{29}+7}{10}\right\}\)
xy - 2x - 3y + 1 = 0
<=> x(y - 2) = 3y - 1
<=> \(=\frac{3y-1}{y-2}=3+\frac{5}{y-2}\)
Để x nguyên thì (y - 2) phải là ước của 5 hay
(y - 2) = (1, 5, - 1, - 5)
Giải tiếp sẽ ra
Điều kiện xác định bạn tự tìm
a) \(\sqrt{x^2-4x+3}=x-2\Leftrightarrow\)\(\left(\sqrt{x^2-4x+3}\right)^2=\left(x-2\right)^2\)
\(\Leftrightarrow x^2-4x+3=x^2-4x+4\Leftrightarrow0=1\) vô lý
pt vô nghiệm
b) \(\sqrt{x^2-1}-\left(x^2-1\right)=0\Leftrightarrow\sqrt{x^2-1}\left(1-\sqrt{x^2-1}\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2-1}=0\\1-\sqrt{x^2-1}=0\end{cases}}\)
<=>\(\orbr{\begin{cases}\\\end{cases}}\begin{matrix}x=\pm1\\x=\pm\sqrt{2}\end{matrix}\)
c)\(\sqrt{x^2-4}-\left(x-2\right)=0\Leftrightarrow\sqrt{x-2}.\sqrt{x+2}-\left(x-2\right)=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-\sqrt{x-2}\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}=0\\\sqrt{x+2}-\sqrt{x-2}=0\end{cases}}\)
<=>x=2 còn cái kia vô nghiệm
bạn tự trình bày chi tiết nhé
a) đkxđ: \(\begin{cases}\sqrt{x^2-4}\ge0\\\sqrt{x^2}+4x+4\ge0\end{cases}\) \(\Leftrightarrow\begin{cases}\begin{cases}x-2\ge0\\x+2\ge0\end{cases}\\x+2\ge0\end{cases}\) \(\Leftrightarrow\begin{cases}x\ge2\\x\le-2\end{cases}\) \(\Leftrightarrow-2\ge x\ge2\)
\(\sqrt{x^2-4}+\sqrt{x^2+4x+4}=0\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}+\sqrt{\left(x+2\right)^2}=0\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}=x+2\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=\left(x+2\right)^2\)
\(\Leftrightarrow\left(x+2\right)\left(x-2-x+2\right)=0\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
S={-2}
b) đkxđ: \(\begin{cases}\sqrt{1-x^2}\ge0\\\sqrt{x+1}\ge0\end{cases}\) \(\Leftrightarrow\begin{cases}1-x^2\ge0\\x+1\ge0\end{cases}\) \(\Leftrightarrow\begin{cases}x^2\le1\\x\ge-1\end{cases}\) \(\Leftrightarrow\begin{cases}\begin{cases}x\le1\\x\ge-1\end{cases}\\x\ge-1\end{cases}\) \(\Leftrightarrow-1\le x\le1\)
\(\sqrt{1-x^2}+\sqrt{x+1}=0\)
\(\Leftrightarrow\sqrt{1-x^2}=-\sqrt{x+1}\)
\(\Leftrightarrow1-x^2=x+1\)
\(\Leftrightarrow-x-x^2=0\)
\(\Leftrightarrow-x\left(1+x\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}-x=0\\1+x=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\left(N\right)\\x=-1\left(N\right)\end{array}\right.\)
S={-1;0}
a, \(x-3\sqrt{x}+2=0\Leftrightarrow x-2\sqrt{x}-\sqrt{x}+2=0\)đk : x >= 0
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)-\left(\sqrt{x}-2\right)=0\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\Leftrightarrow x=1;x=4\)
b, \(\sqrt{x^2-1}-\sqrt{x+1}=0\Leftrightarrow\sqrt{\left(x-1\right)\left(x+1\right)}-\sqrt{x+1}=0\)đk : \(x\ge1\)
\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{x-1}-1\right)=0\)
TH1 : \(x=-1\)( loại )
TH2 : \(\sqrt{x-1}=1\Leftrightarrow x-1=1\Leftrightarrow x=2\)
c, \(x^2+4x+4-\sqrt{2x+1}-\left(x-1\right)^2=0\)đk : x>= -1/2
\(\Leftrightarrow\left(x+2\right)^2-\left(x-1\right)^2-\sqrt{2x+1}=0\)
\(\Leftrightarrow3\left(2x+1\right)-\sqrt{2x+1}=0\Leftrightarrow\sqrt{2x+1}\left(3\sqrt{2x+1}-1\right)=0\)
TH1 : \(x=-\frac{1}{2}\)
TH2 : \(\sqrt{2x+1}=\frac{1}{3}\Leftrightarrow2x+1=\frac{1}{9}\Leftrightarrow x=\frac{\frac{1}{9}-1}{2}=\frac{-\frac{8}{9}}{2}=-\frac{4}{9}\)
a) ĐK : x \(\ge0\)
\(x-3\sqrt{x}+2=0\)
<=> \(\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)
<=> \(\orbr{\begin{cases}\sqrt{x}-1=0\\\sqrt{x}-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=4\end{cases}}\)(tm)
b) ĐK \(\hept{\begin{cases}x\ge-1\\x\notin\left\{x\in R|-1< x< 0\right\}\end{cases}}\)
\(\sqrt{x^2-1}-\sqrt{x+1}=0\)
<=> \(\sqrt{x-1}\sqrt{x+1}-\sqrt{x+1}=0\)
<=> \(\sqrt{x-1}\left(\sqrt{x+1}-1\right)=0\)
<=> \(\orbr{\begin{cases}\sqrt{x+1}=0\\\sqrt{x-1}-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-1=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)(tm)
c) ĐK : \(x\ge-\frac{1}{2}\)
\(x^2+4x+4-\sqrt{2x+1}-\left(x-1\right)^2=0\)
<=> \(6x+3-\sqrt{2x+1}=0\)
<=> \(\sqrt{2x+1}\left(3\sqrt{2x+1}-1\right)=0\)
<=> \(\orbr{\begin{cases}\sqrt{2x+1}=0\\3\sqrt{2x+1}-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=-\frac{4}{9}\end{cases}}\)(tm)
Ta có: ( 2 x − 1 ) ( x + 2 ) = 0 ⇔ 2 x − 1 = 0 x + 2 = 0
Với 2 x − 1 = 0 ⇔ x = 1 2
Với x + 2 = 0 ⇔ x = − 2
Vậy phương trình có hai nghiệm x = 1 2 ; x = − 2