Giải phương trình sau: ( 2 x   −...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2018

Ta có: ( 2 x − 1 ) ( x + 2 ) = 0 ⇔ 2 x − 1 = 0 x + 2 = 0

Với 2 x − 1 = 0 ⇔ x = 1 2

Với  x + 2 = 0 ⇔ x = − 2

Vậy phương trình có hai nghiệm  x = 1 2 ;    x = − 2

21 tháng 3 2021

\(x^2+x+m-2=0\)

\(a,m=0\)

\(\Rightarrow x^2+x-2=0\)

\(\Rightarrow\hept{\begin{cases}x=1\\x=-2\end{cases}}\)

Vậy m=0 thì pt có 2 nghiệm x=1 và x=-2

21 tháng 3 2021

a, Thay m = 0 vào phương trình trên ta được : 

\(x^2+x-2=0\)

Ta có : \(\Delta=1+8=9\)

\(x_1=\frac{-1-3}{2}=-2;x_2=\frac{-1+3}{2}=1\)

Vậy m = 0 thì x = -2 ; x = 1 

b, Theo Vi et \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-1\\x_1x_2=\frac{c}{a}=m-2\end{cases}}\)

mà \(\left(x_1+x_2\right)^2=1\Leftrightarrow x_1^2+x_2^2=1-2x_1x_2=2m-3\)

hay bất phương trình trên tương đương : 

\(2m-3-3\left(m-2\right)< 1\)

\(\Leftrightarrow2m-3-3m+6< 1\Leftrightarrow-m+3< 1\)

\(\Leftrightarrow-m< -2\Leftrightarrow m>2\)

19 tháng 5 2023

m=1.

a: \(\Leftrightarrow x^2-3x+\dfrac{9}{4}=\dfrac{5}{4}\)

=>(x-3/2)2=5/4

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{2}=\dfrac{\sqrt{5}}{2}\\x-\dfrac{3}{2}=-\dfrac{\sqrt{5}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{5}+3}{2}\\x=\dfrac{-\sqrt{5}+3}{2}\end{matrix}\right.\)

b: \(x^2+\sqrt{2}x-1=0\)

nên \(x^2+2\cdot x\cdot\dfrac{\sqrt{2}}{2}+\dfrac{1}{2}=\dfrac{3}{2}\)

\(\Leftrightarrow\left(x+\dfrac{\sqrt{2}}{2}\right)^2=\dfrac{3}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\sqrt{2}}{2}=\dfrac{\sqrt{6}}{2}\\x+\dfrac{\sqrt{2}}{2}=-\dfrac{\sqrt{6}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{6}-\sqrt{2}}{2}\\x=\dfrac{-\sqrt{6}-\sqrt{2}}{2}\end{matrix}\right.\)

c: \(5x^2-7x+1=0\)

\(\Leftrightarrow x^2-\dfrac{7}{5}x+\dfrac{1}{5}=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{10}+\dfrac{49}{100}=\dfrac{29}{100}\)

\(\Leftrightarrow\left(x-\dfrac{7}{10}\right)^2=\dfrac{29}{100}\)

hay \(x\in\left\{\dfrac{\sqrt{29}+7}{10};\dfrac{-\sqrt{29}+7}{10}\right\}\)

13 tháng 11 2016

xy - 2x - 3y + 1 = 0

<=> x(y - 2) = 3y - 1

<=> \(=\frac{3y-1}{y-2}=3+\frac{5}{y-2}\)

Để x nguyên thì (y - 2) phải là ước của 5 hay

(y - 2) = (1, 5, - 1, - 5)

Giải tiếp sẽ ra

21 tháng 7 2017

Điều kiện xác định bạn tự tìm

a) \(\sqrt{x^2-4x+3}=x-2\Leftrightarrow\)\(\left(\sqrt{x^2-4x+3}\right)^2=\left(x-2\right)^2\)

\(\Leftrightarrow x^2-4x+3=x^2-4x+4\Leftrightarrow0=1\) vô lý

pt vô nghiệm

b) \(\sqrt{x^2-1}-\left(x^2-1\right)=0\Leftrightarrow\sqrt{x^2-1}\left(1-\sqrt{x^2-1}\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2-1}=0\\1-\sqrt{x^2-1}=0\end{cases}}\)

<=>\(\orbr{\begin{cases}\\\end{cases}}\begin{matrix}x=\pm1\\x=\pm\sqrt{2}\end{matrix}\)

c)\(\sqrt{x^2-4}-\left(x-2\right)=0\Leftrightarrow\sqrt{x-2}.\sqrt{x+2}-\left(x-2\right)=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-\sqrt{x-2}\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}=0\\\sqrt{x+2}-\sqrt{x-2}=0\end{cases}}\)

<=>x=2 còn cái kia vô nghiệm

bạn tự trình bày chi tiết nhé

20 tháng 7 2017

a) bình phương -> rút gọn-> giải nghiệm

b,c) chuyển những phần tử không có căn sang vế phải->bình phương->rút gọn->tìm nghiệm

3 tháng 8 2016

a) đkxđ: \(\begin{cases}\sqrt{x^2-4}\ge0\\\sqrt{x^2}+4x+4\ge0\end{cases}\)  \(\Leftrightarrow\begin{cases}\begin{cases}x-2\ge0\\x+2\ge0\end{cases}\\x+2\ge0\end{cases}\) \(\Leftrightarrow\begin{cases}x\ge2\\x\le-2\end{cases}\) \(\Leftrightarrow-2\ge x\ge2\)

 \(\sqrt{x^2-4}+\sqrt{x^2+4x+4}=0\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}+\sqrt{\left(x+2\right)^2}=0\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}=x+2\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=\left(x+2\right)^2\)

\(\Leftrightarrow\left(x+2\right)\left(x-2-x+2\right)=0\)

\(\Leftrightarrow x+2=0\)

\(\Leftrightarrow x=-2\)

S={-2}

 

3 tháng 8 2016

b) đkxđ: \(\begin{cases}\sqrt{1-x^2}\ge0\\\sqrt{x+1}\ge0\end{cases}\) \(\Leftrightarrow\begin{cases}1-x^2\ge0\\x+1\ge0\end{cases}\) \(\Leftrightarrow\begin{cases}x^2\le1\\x\ge-1\end{cases}\) \(\Leftrightarrow\begin{cases}\begin{cases}x\le1\\x\ge-1\end{cases}\\x\ge-1\end{cases}\) \(\Leftrightarrow-1\le x\le1\)
\(\sqrt{1-x^2}+\sqrt{x+1}=0\) 

\(\Leftrightarrow\sqrt{1-x^2}=-\sqrt{x+1}\)

\(\Leftrightarrow1-x^2=x+1\)

\(\Leftrightarrow-x-x^2=0\)

\(\Leftrightarrow-x\left(1+x\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}-x=0\\1+x=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\left(N\right)\\x=-1\left(N\right)\end{array}\right.\) 

S={-1;0}

7 tháng 10 2021

a, \(x-3\sqrt{x}+2=0\Leftrightarrow x-2\sqrt{x}-\sqrt{x}+2=0\)đk : x >= 0 

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)-\left(\sqrt{x}-2\right)=0\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\Leftrightarrow x=1;x=4\)

b, \(\sqrt{x^2-1}-\sqrt{x+1}=0\Leftrightarrow\sqrt{\left(x-1\right)\left(x+1\right)}-\sqrt{x+1}=0\)đk : \(x\ge1\)

\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{x-1}-1\right)=0\)

TH1 : \(x=-1\)( loại )

TH2 : \(\sqrt{x-1}=1\Leftrightarrow x-1=1\Leftrightarrow x=2\)

c, \(x^2+4x+4-\sqrt{2x+1}-\left(x-1\right)^2=0\)đk : x>= -1/2 

\(\Leftrightarrow\left(x+2\right)^2-\left(x-1\right)^2-\sqrt{2x+1}=0\)

\(\Leftrightarrow3\left(2x+1\right)-\sqrt{2x+1}=0\Leftrightarrow\sqrt{2x+1}\left(3\sqrt{2x+1}-1\right)=0\)

TH1 : \(x=-\frac{1}{2}\)

TH2 : \(\sqrt{2x+1}=\frac{1}{3}\Leftrightarrow2x+1=\frac{1}{9}\Leftrightarrow x=\frac{\frac{1}{9}-1}{2}=\frac{-\frac{8}{9}}{2}=-\frac{4}{9}\)

7 tháng 10 2021

a) ĐK : x \(\ge0\) 

\(x-3\sqrt{x}+2=0\)

<=> \(\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)

<=> \(\orbr{\begin{cases}\sqrt{x}-1=0\\\sqrt{x}-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=4\end{cases}}\)(tm) 

b) ĐK \(\hept{\begin{cases}x\ge-1\\x\notin\left\{x\in R|-1< x< 0\right\}\end{cases}}\)

\(\sqrt{x^2-1}-\sqrt{x+1}=0\)

<=> \(\sqrt{x-1}\sqrt{x+1}-\sqrt{x+1}=0\)

<=> \(\sqrt{x-1}\left(\sqrt{x+1}-1\right)=0\)

<=> \(\orbr{\begin{cases}\sqrt{x+1}=0\\\sqrt{x-1}-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-1=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)(tm) 

c) ĐK : \(x\ge-\frac{1}{2}\)

 \(x^2+4x+4-\sqrt{2x+1}-\left(x-1\right)^2=0\)

<=> \(6x+3-\sqrt{2x+1}=0\)

<=> \(\sqrt{2x+1}\left(3\sqrt{2x+1}-1\right)=0\)

<=> \(\orbr{\begin{cases}\sqrt{2x+1}=0\\3\sqrt{2x+1}-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=-\frac{4}{9}\end{cases}}\)(tm)