\(6x^2+19x^2+24x-2y+12xy-725=0\)

b)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 10 2019

a/ Hình như bạn ghi nhầm đề

b/ \(\Leftrightarrow x^2y^2-7y^2=x^2+2xy+y^2\)

\(\Leftrightarrow y^2\left(x^2-7\right)=\left(x+y\right)^2\)

- Với \(y=0\Rightarrow x=0\)

- Với \(y\ne0\) do \(y^2\)\(\left(x+y\right)^2\) đều là số chính phương \(\Rightarrow x^2-7\) là SCP

Đặt \(x^2-7=k^2\Leftrightarrow\left(x-k\right)\left(x+k\right)=7\)

Phương trình ước số cơ bản

c/ \(\Leftrightarrow\left(x-y\right)^3+3xy\left(x-y\right)=xy+25\)

\(\Leftrightarrow\left(x-y\right)^3-25=xy\left(1-3\left(x-y\right)\right)\)

Đặt \(\left\{{}\begin{matrix}x-y=a\\xy=b\end{matrix}\right.\) \(\Rightarrow a^2\ge-4b\Rightarrow b\ge-\frac{a^2}{4}\)

\(\Rightarrow a^3-25=b\left(1-3a\right)\)

\(\Leftrightarrow b=\frac{a^3-25}{1-3a}\ge-\frac{a^2}{4}\)

Do \(a\) nguyên \(\Rightarrow1\le a\le4\)

\(\Rightarrow a=\left\{1;2;3;4\right\}\) thay vào chỉ có \(a=1\Rightarrow b=12\) thỏa mãn

\(\Rightarrow\left\{{}\begin{matrix}x-y=1\\xy=12\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(4;3\right);\left(-3;-4\right)\)

27 tháng 10 2019

Đề câu a là \(6x^2+19y^2+24x-2y+12xy-725=0\). Mình viết nhầm y thành x

1 tháng 11 2020

Bài 1 :

a) \(x^3-x^2-x-2=0\)

\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)

\(\Leftrightarrow\left(x^3-2x^2\right)+\left(x^2-2x\right)+\left(x-2\right)=0\)

\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)(1)

Vì \(x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

\(\Rightarrow x^2+x+1\ge\frac{3}{4}\forall x\)(2)

Từ (1) và (2) \(\Rightarrow x-2=0\)\(\Leftrightarrow x=2\)

Vậy \(x=2\)

1 tháng 11 2020

Bài 2: 

\(2x^2+y^2-2xy+2y-6x+5=0\)

\(\Leftrightarrow x^2-2xy+y^2-2x+2y+1+x^2-4x+4=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2-2\left(x-y\right)+1+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-y-1\right)^2+\left(x-2\right)^2=0\)(1)

Vì \(\left(x-y-1\right)^2\ge0\forall x,y\)\(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-y-1\right)^2+\left(x-2\right)^2\ge0\forall x,y\)(2)

Từ (1) và (2) \(\Rightarrow\left(x-y-1\right)^2+\left(x-y\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=x-1\\x=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)

Vậy \(x=2\)và \(y=1\)

19 tháng 9 2018

a, \(x^2+2=2\sqrt{x^2+1}\)

\(\Rightarrow x^2+1-2\sqrt{x^2+1}+1=0\)

\(\Rightarrow\left(\sqrt{x^2+1}-1\right)^2=0\)

\(\Rightarrow\sqrt{x^2+1}-1=0\)\(\Rightarrow x^2+1=1\Rightarrow x=0\)

b,\(x^2+x+2y^2+y=2xy^2+xy+3\)

\(\Rightarrow2xy^2+xy-x^2-x-2y^2-y+3=0\)

\(\Rightarrow2y^2\left(x-1\right)+y\left(x-1\right)-x\left(x-1\right)-2\left(x-1\right)+1=0\)

\(\Rightarrow\left(x-1\right)\left(2y^2+y-x-2\right)=-1=1\cdot\left(-1\right)=\left(-1\right)\cdot1\)

đoạn sau bạn tự giái tiếp nhé

19 tháng 9 2018

a) \(x^2+2=2\sqrt{x^2+1}\)

\(\Leftrightarrow\left(x^2+2\right)^2=\left(2\sqrt{x^2+1}\right)^2\)

\(\Leftrightarrow x^4+4x^2+4=4x^2+4\)

\(\Leftrightarrow x=0\)

7 tháng 10 2020

b) x2y + x + xy2 + y + 2xy = 9

xy(x + y + 2) + (x + y + 2) = 11

<=> (xy + 1)(x + y + 2) = 11

Xét các TH

+) \(\hept{\begin{cases}xy+1=1\\x+y+2=11\end{cases}}\) <=> \(\hept{\begin{cases}xy=0\\x+y=9\end{cases}}\) <=> x = 0 => y = 9 hoặc y = 0 => x = 9

+) \(\hept{\begin{cases}xy+1=-1\\x+y+2=-11\end{cases}}\)<=> \(\hept{\begin{cases}xy=-2\\x+y=-13\end{cases}}\) <=> \(\hept{\begin{cases}x=-13-y\\y\left(-13-y\right)=-2\end{cases}}\)

<=> \(\hept{\begin{cases}x=-13-y\\y^2+13y-2=0\end{cases}}\)(loại)

+) \(\hept{\begin{cases}xy+1=11\\x+y+2=1\end{cases}}\) <=> \(\hept{\begin{cases}xy=10\\x+y=-1\end{cases}}\) <=> \(\hept{\begin{cases}y\left(-1-y\right)=10\\x=-1-y\end{cases}}\) <=> \(\hept{\begin{cases}y^2+y+10=0\\x=-1-y\end{cases}}\)(loại)

+) \(\hept{\begin{cases}xy+1=-11\\x+y+2=-1\end{cases}}\) <=> \(\hept{\begin{cases}xy=-12\\x+y=-3\end{cases}}\) <=> \(\hept{\begin{cases}y\left(-3-y\right)=-12\\x=-3-y\end{cases}}\) <=> \(\hept{\begin{cases}y^2+3y-12=0\\x=-3-y\end{cases}}\) (loại)

Dùng cái đầu đi ạ