\(x^2+xy-2016x-2017y-2018=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2021

https://h7.net/hoi-dap/toan-8/tim-cac-cap-so-nguyen-x-y-thoa-man-x-2-xy-2016x-2017y-2018-0-faq348139.html

Vào link này nhé! (chỉ cần sao chép và search google)

18 tháng 2 2021

chiu không copy đươc.Em gửi cho anh đi

15 tháng 12 2019

(x2-xy-6y2)+(2x-6y)-10 =0

[(x2-3xy)+(2xy-6y2)] + 2(x-3y) -10 = 0

(x-3y).(x+2y) + 2(x-3y) -10 = 0

(x-3y).(x+2y+2)=10

vì x,y nguyên x-3y và x+2y+2 phải nguyên

mà 10=1.10=(-1).(-10)=2.5=(-2).(-5)=10.1=(-10).(-1)=5.2=(-5).(-2)

31 tháng 3 2020

bang 0 chu bang may  ha chung may

4 tháng 2 2017

coi như ẩn x

\(\left(2x+y\right)^2+3y^2=12\)

=> !y!<=2

vai trò x, y như nhau

với  y=0=> vô nghiệm nguyên 

với y=-1=> x=2

với y=1=> x=-2

(x,y)=(-2,1);(2,-1);(1,-2);(-1,2)

4 tháng 2 2017

cái !y! là dấu GTTĐ à?

16 tháng 7 2019

\(x^3+2x=2018-y^2\Leftrightarrow x^3-x+3x=2018-y^2\Leftrightarrow x\left(x-1\right)\left(x+1\right)=2018-y^2-3x\) 

\(VT⋮3\Rightarrow2018-y^2-3x⋮3\Leftrightarrow2018-y^2⋮3mà:2018\text{ chia 3 d}ư\text{ 2}\Rightarrow y\text{ chia 3 d}ư\text{ 2(voli)}.\text{Vậy: ko tìm đc x,y}\)

6 tháng 9 2016

\(x^2+y^2=3-xy\)

\(\Leftrightarrow\left(x-y\right)^2=3\left(1-xy\right)\)

\(\Leftrightarrow x-y=3\) và \(1-xy=3\)

\(\Leftrightarrow\left(x;y\right)=\left(1;-2\right),\left(2;-1\right);\left(-1;2\right);\left(-2;1\right)\)

hoặc : \(x-y=0\) và \(1-xy=0\)

\(\Leftrightarrow\left(x;y\right)=\left(1;1\right)\left(-1;-1\right)\)

8 tháng 1 2017

ban oi tai sao den buoc 3 ban lai suy ra nhu vay duoc

4 tháng 2 2020

\(x+y+xy=x^2+y^2\Leftrightarrow2x^2+2y^2=2x+2y+2xy\Leftrightarrow2x^2+2y^2-2xy-2x-2y+2=2\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=2\)

tới đây x;y nguyên nên dễ rồi

8 tháng 6 2020

Áp dụng bất đẳng thức x2+y2≥2xyx2+y2≥2xy nên ta có x2+y2+xy≥3xyx2+y2+xy≥3xy
Mà x2+y2+xy=x2y2≥0x2+y2+xy=x2y2≥0 nên suy ra x2y2+3xy≤0⟺−3≤xy≤0x2y2+3xy≤0⟺−3≤xy≤0
Vì x,yx,y nguyên nên xyxy nguyên, vậy nên xy∈{−3,−2,−1,0}xy∈{−3,−2,−1,0}
Trường hợp xy=−3xy=−3 ta tìm được các nghiệm (−1,3),(3,−1),(−3,1),(1,−3)(−1,3),(3,−1),(−3,1),(1,−3)
Trường hợp xy=−2xy=−2 ta tìm được các nghiệm (−1,2),(2,−1),(1,−2),(−2,1)(−1,2),(2,−1),(1,−2),(−2,1)
Trường hợp xy=−1xy=−1 ta tìm được các nghiệm (−1,1),(1,−1)(−1,1),(1,−1)
Trường hợp xy=0xy=0 ta tìm được nghiệm (0,0)(0,0)
Thử lại thì thấy chỉ có các nghiệm (0,0),(1,−1),(−1,1)(0,0),(1,−1),(−1,1) thỏa mãn và đó là các nghiệm nguyên cần tìm

18 tháng 1 2019

a){x^2} + {y^2} + xy + 3x - 3y + 9 = 0

2{x^2} + 2{y^2} + 2xy + 6x - 6y + 18 = 0

({x^2} + 2xy + {y^2}) + ({x^2} + 6x + 9) + ({y^2} - 6y + 9) = 0

{(x + y)^2} + {(x + 3)^2} + {(y - 3)^2} = 0

\Rightarrow x + y = 0;x + 3 = 0;y - 3 = 0

\Rightarrow x =  - 3;y = 3

b ) x2 - 4x - 2y + xy + 1 = 0

( x2 - 4x + 4 ) - y ( 2 - x ) -3 = 0

( x - 2 )2 - y ( 2 - x ) = 3

( 2 - x ) ( 2 - x - y ) = 3

đến đây lập bảng tìm ra x,y

18 tháng 1 2019

a) x2 + y2 + xy + 3x - 3y + 9 = 0

2x2 + 2y2 + 2xy + 6x - 6y + 18 = 0

( x2 + 2xy + y2 ) + ( x2 + 6x + 9 ) + ( y2 - 6y + 9 ) = 0

( x + y )2 + ( x + 3 )2 + ( y - 3 )2 = 0

\(\Rightarrow\)( x + y )2 = ( x + 3 )2 = ( y - 3 )2 = 0

\(\Rightarrow\)x = -3 ; y = 3

17 tháng 2 2020

Ta có: \(x+xy-x^2+y=1\)

<=> \(\left(x+1\right)+\left(1-x^2\right)+\left(xy+y\right)=3\)

<=> (x + 1) + ( 1 + x) ( 1 - x ) + y ( x + 1 ) = 3

<=> ( x + 1 ) ( 1 + 1 - x + y ) = 3

<=> ( x + 1 ) ( 2 - x  + y ) = 3

Chia trường hợp lập bảng rồi làm tiếp nhé!

18 tháng 2 2020

em có cách khác:

\(x+xy-x^2+y=1\)

\(\Leftrightarrow xy+y=x^2+1-x\)

\(\Leftrightarrow y=\frac{x^2-x+1}{x+1}=\frac{\left(x+1\right)^2-3x}{x+1}=x+1-\frac{3x}{x+1}\)

Do y nguyên nên \(\frac{3x}{x+1}\) nguyên 

\(\Rightarrow3x⋮x+1\)

\(\Rightarrow3\left(x+1\right)-3⋮x+1\)

\(\Rightarrow x+1\in\left\{1;3;-1;-3\right\}\)

Tìm được x xong thử vào tìm y nhé !