Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(x^4+y^4=7z^4+5\Leftrightarrow x^4+y^4+z^4=8z^4+5\)
Áp dụng tính chất lũy thừa bậc 4 của số nguyên a khi chia cho 8 dư 0 hoặc 1
tức là \(a^4\equiv0,1\left(mod8\right)\)
\(\Rightarrow a^4+b^4+c^4\equiv0,1,2,3\left(mod8\right)\)
Mà \(8z^4+5\equiv5\left(mod8\right)\)
vậy pt k có nghiệm nguyên
\(x^2+x=y^4+y^3+y^2+y\) (1)
\(\Leftrightarrow4y^4+4y^3+4y^2+4y+1=4x^2+4x+1\)
\(\Leftrightarrow\left(2y^2+y\right)^2+3y^2+4y+1=\left(2x+1\right)^2\)
Ta có
\(\left(2y^2+y\right)^2< \left(2y^2+y\right)+3y^2+4y+1< \left(2y^2+y+2\right)^2\) (2)
\(\left(2\right)\Leftrightarrow\hept{\begin{cases}3y^2+4y+1>0\\\left(3y^2+y\right)^2+4\left(2y^2+y\right)+4-\left(2y^2+y\right)^2-3y^2-4y-1>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(y+1\right)\left(3y+1\right)>0\\5y^2+3>0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y< -1\\y>\frac{-1}{3}\end{cases}}\)
\(\Leftrightarrow y\ne-1\)(do y là số nguyên)
lúc đó (1) xảy ra khi
\(\left(2x+1\right)^2=\left(2y^2+y+1\right)^2\) (3)
tức là \(\left(2y^2+y\right)^2+3y^2+4y+1=\left(2y^2+y+1\right)^2\)
\(\Leftrightarrow\)\(\left(2y^2+y\right)^2+3y^2+4y+1=\left(2y^2+y\right)^2+2\left(2y^2+y\right)+1\)
\(\Leftrightarrow3y^2+4y=4y^2+2y\)
\(\Leftrightarrow y^2-2y=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=0\\y=2\end{cases}}\)
Thay vào (3) tìm được y
Nghiệm (y,x) là (0,0),(0,-1),(2,5),(2,-6),(-1,0),(-1,-1)
Hướng dẫn:
\(\left(m-2\right)x^4-3x^2+m+2=0\left(1\right)\)
TH1: m - 2 = 0 <=> m = 2
khi đó phương trình trở thành: \(-3x^2+4=0\)
<=> \(x=\pm\frac{2}{\sqrt{3}}\)
TH2: m khác 2
Đặt: \(x^2=t\ge0\)
Ta có phương trình ẩn t: \(\left(m-2\right)t^2-3t+m+2=0\left(2\right)\)
có: \(\Delta=3^2-4\left(m-2\right)\left(m+2\right)=-4m^2+25\)
+) Phương trình (1) vô nghiệm <=> phương trình (2) vô nghiệm
<=> \(\Delta\)<0 ( tự giải ra)
+) Phương trình (1) có 1 nghiệm <=> phương trình 2 có 1 nghiệm bằng 0 và 1 nghiệm âm ( có thể có hoặc có thể không )
+) phương trình (1) có 3 nghiệm <=> phương trình 2 có 1 nghiệm bằng 0 và 1 nghiệm dương
Với t = 0 thay vào ta có: \(\left(m-2\right)0^2-3.0+m+2=0\)
<=> m = - 2
Thay vào phương trình (2) : \(-4t^2-3.t=0\)
<=> \(t\left(4t+3\right)=0\)
<=> t = 0
=> Không tồn tại t để phương trình có 3 nghiệm và m = -2 thì phương trình có 1 nghiệm
+) Phương trình (1) có 2 nghiệm <=>phuowng trình (2) có 2 nghiệm trái dấu
<=> m + 2 < 0 <=> m < - 2
Kết hợp với TH1 nữa nhé!
+) Phương trình (1) có 4 nghiệm
<=> phương trình 2 có 2 nghiệm dương
<=> \(\Delta\ge0;P>0;S>0\) ( tự giải)