\(\sqrt{x+\sqrt{x+\sqrt{x+\sqrt{x+...+\sqrt{x+\sqrt{x}}}}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2017

b)\(y^2=x+\sqrt{x+....+\sqrt{x}}\)

\(\Rightarrow y^2=x+y\Rightarrow y^2-x-y=0\)

Tới đây theo kinh nghiệm 10 năm học toán thì t có thể đoán được 

\(x=-\frac{1}{4};y=\frac{1}{2}\) là nghiệm *đã được chứng minh...*

HÌnh như sai dung ạ :v 

5 tháng 5 2017

Bình phương hai vế ta có:

 \(x+\sqrt{x+\sqrt{x+\sqrt{x}}}=y^2\Rightarrow\sqrt{x+\sqrt{x+\sqrt{x}}}=y^2-x=t\)

Tiếp túc bình phương và chuyển vế, ta có:

\(\sqrt{x+\sqrt{x}}=t^2-x=u\)

\(x+\sqrt{x}=u^2\)

Do y nguyên, x nguyên nên t nguyên, suy ra u nguyên, suy ra u2 nguyên, vậy thì \(\sqrt{x}\) nguyên.

Ta có \(\sqrt{x}\left(\sqrt{x}+1\right)=u^2\). Hai số tự nhiên liên tiếp có tích là số chính phương u2 nên \(\sqrt{x}=0\Rightarrow x=0.\)

Từ đó suy ra y = 0.

Vậy nghiệm của phương trình là (x; y) = (0; 0).

17 tháng 4 2020

\(ĐK:x,y\ge0\)

\(\sqrt{x}+\sqrt{y}=\sqrt{2019}\Leftrightarrow\sqrt{y}=\sqrt{2019}-\sqrt{x}\)

Bình phương hai vế ta được \(y=2019+x-2\sqrt{2019x}\Rightarrow\sqrt{2019x}\inℕ\)

Vì 2019 = 3.673 và (3;673) = 1 nên \(x=3.673.n^2=2019n^2\left(n\inℕ\right)\)

Tương tự \(y=3.673.m^2=2019m^2\left(m\inℕ\right)\)

Thay vào ta được m + n = 1\(\Rightarrow\left(m;n\right)\in\left\{\left(0;1\right);\left(1;0\right)\right\}\Rightarrow\left(x;y\right)\in\left\{\left(0;2019\right);\left(2019;0\right)\right\}\)

Vậy phương trình có 2 cặp nghiệm (x;y) thỏa mãn là \(\left\{\left(0;2019\right);\left(2019;0\right)\right\}\)

31 tháng 12 2018

ĐKXĐ: x;y > 0

\(pt\Leftrightarrow\sqrt{x+\sqrt{x+\sqrt{x}}}=y^2-x\)(bình phương + chuyển vế)

 Vì \(\hept{\begin{cases}x;y\inℤ\\x;y\ge0\end{cases}\Rightarrow}x;y\inℕ\)

                           \(\Rightarrow y^2-x\inℕ\)(Vì VP > 0 nên VT > 0 mà 2 số này thuộc N nên hiệu của chúng thuộc N)

Đặt \(y^2-x=a\left(a\inℕ\right)\)

Khi đó \(\sqrt{x+\sqrt{x+\sqrt{x}}}=a\)

    \(\Leftrightarrow\sqrt{x+\sqrt{x}}=a^2-x\)(bình phương+chuyển vế)

Tương tự như trên 

Đặt \(a^2-x=b\left(b\inℕ\right)\)

\(\Rightarrow\sqrt{x+\sqrt{x}}=b\)

\(\Leftrightarrow x+\sqrt{x}=b^2\left(1\right)\)

Từ (1) => \(\sqrt{x}\inℕ\)

Ta có: \(\left(1\right)\Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)=b^2\)

Vì \(\sqrt{x}\)và \(\sqrt{x}+1\)là 2 số tự nhiên liên tiếp

Mà b2 là số chính phương

\(\Rightarrow\sqrt{x}=0\)

\(\Rightarrow x=0\)

\(\Rightarrow y=0\)

Vậy pt có nghiệm duy nhất (x;y) = (0;0)

đặt \(\sqrt{x+y-4}=a;\sqrt{x-y+4}=b;\sqrt{-x+y+4}=c\left(a;b;c\ge0\right)\)

pt trở thành a+b+c=\(\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\)

bunhia có VT\(\le\)VP 

dấu = xảy ra <=>a=b=c<=>x=y=4