\(\left(x-3\right)y^2-x^2=48\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2019

\(\left(x-3\right)y^2-x^2=48\)

\(\Leftrightarrow y^2=\frac{x^2+48}{x-3}\)

\(y\) nguyên nên \(y^2\)nguyên. Vì vậy :

\(x^2+48⋮x-3\)

\(\Leftrightarrow x^2-3x+3x+48⋮x-3\)

\(\Leftrightarrow x\left(x-3\right)+3\left(x-3\right)+57⋮x-3\)

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)+57⋮x+3\)

\(\Rightarrow57⋮x+3\)

\(\Rightarrow x+3\inƯ\left(57\right)=\left\{\pm1;\pm3;\pm19;\pm57\right\}\)

Tìm x rồi thay vào pt tìm y là xong

18 tháng 10 2020

Ta có:

\(2^x\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)\) là tích 5 số tự nhiên nên chia hết cho 5 

Mà 2x không chia hết cho 5 nên

\(\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)⋮5\)

Mà 11879 không chia hết cho 5 nên y=0

=> \(\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)=11880=9.10.11.12\Rightarrow x=3\)

Vậy pt có nghiệm (x;y)=(3;0)

2 tháng 1 2018

phương trình 1 có nhiều ẩn thế bn

2 tháng 1 2018

Câu 2:, ta có 

Xét x=1, ...

Xét x khác 1 ...

\(y=\frac{x^2+2}{x-1}=\frac{x^2-1+3}{x-1}=x+1+\frac{3}{x-1}\)

và y là số nguyên => x-1 llà ước của 3, đến đây tự giải nhé 

^_^

25 tháng 11 2018

\(y=\frac{x^2+2}{x-1}\left(x\ne1\right)\)

Để \(y\in Z\Rightarrow\frac{x^2+2}{x-1}\in Z\Rightarrow x^2+2⋮\left(x-1\right)\)

\(\Rightarrow\left(x-1\right)\left(x+1\right)+3⋮\left(x-1\right)\)

\(\Rightarrow3⋮\left(x-1\right)\Rightarrow\left(x-1\right)\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

\(\Rightarrow x\in\left\{-2;0;2;4\right\}\) (thỏa mãn x khác 1)

Từ đó thay lần lượt x vào \(y=\frac{x^2+2}{x-1}\) ,tìm được 

\(\left(x,y\right)\in\left\{\left(-2;-2\right),\left(0;-2\right),\left(2;6\right),\left(4;6\right)\right\}\)

7 tháng 10 2017

nhân cái đầu với cái cuối

10 tháng 3 2018

x=y=0

20 tháng 4 2018

a/ Đặt \(\hept{\begin{cases}\frac{x+1}{x-2}=a\\\frac{x+1}{x-4}=b\end{cases}}\) thì có

\(a^2+b-\frac{12b^2}{a^2}=0\)

\(\Leftrightarrow\left(a^2-3b\right)\left(a^2+4b\right)=0\)

b/ \(2x^2+3xy-2y^2=7\)

\(\Leftrightarrow\left(2x-y\right)\left(x+2y\right)=7\)