\(19^x+5^y+1890=1974^{4^{30}}+2013\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2019

Do 1974 chia 4 dư 2

=> \(1974^{4^{30}}⋮4\)=> \(1974^{4^{30}}+2013\)chia 4 dư 3

+ x lẻ

=> \(\left(19^x+1\right)⋮\left(19+1\right)=20⋮4\)

Lại có \(\left(5^y-1\right)⋮\left(5-1\right)=4\)

 1890 chia 4 dư 2

=> \(19^x+5^y+1890\)chia 4 dư 2(  loại vì VP chia 4 dư 3)

\(x\)chẵn  Đặt \(x=2k\)

=> \(19^x=19^{2k}=361^k\)

=> \(19^x-1=\left(361^k-1\right)⋮\left(361-1\right)⋮4\)

Lại có \(5^y-1⋮4\)

=> \((19^x+5^y-2)⋮4\)

=> \(\left(19^x+5^y+1890\right)⋮4\)(loại vì VP chia 4 dư 3)

=> PT vô nghiệm

Vậy PT vô nghiệm

3 tháng 10 2018

\(\frac{5}{x}+\frac{5}{y}=1\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{5}\)

Vai trò của x,y là bình đẳng,nên ta giả sử \(x\ge y\). Dùng BĐT để giới hạn khoảng giá trị của số nhỏ hơn (y)

Hiển nhiên ta có: \(\frac{1}{y}<\frac{1}{5}\) nên y>5. Mặt khác,do \(x\ge y\ge1\) nên \(\frac{1}{x}\le\frac{1}{y}\). Do đó:

\(\frac{1}{5}=\frac{1}{x}+\frac{1}{y}\le\frac{1}{y}+\frac{1}{y}=\frac{2}{y}\).

\(\frac{2}{y}\ge\frac{1}{5}\) nên \(10\ge y\). Vậy \(6\le y\le10\). Ta có:

Với y = 6 thì \(\frac{1}{x\ }=\frac{1}{5}-\frac{1}{6}=\frac{1}{30}\Leftrightarrow x=30\)

Với y = 7 thì \(\frac{1}{x}=\frac{1}{5}-\frac{1}{7}=\frac{2}{35}\Leftrightarrow x=35\) (loại)

Với y = 8 thì \(\frac{1}{x}=\frac{1}{5}-\frac{1}{8}=\frac{3}{40}\Leftrightarrow x=40\) (loại)

Với y = 9 thì \(\frac{1}{x}=\frac{1}{5}-\frac{1}{9}=\frac{4}{45}\Leftrightarrow x=45\) (loại)

Với y = 10 thì \(\frac{1}{x}=\frac{1}{5}-\frac{1}{10}=\frac{1}{10}\Leftrightarrow x=10\)

Vậy x=30,y=6. Do vai trò bình đẳng nên ta có thêm 1 giá trị khác: x=6,y=30
và x=10,y=10

3 tháng 10 2018

(đã xóa câu trả lời)

10 tháng 2 2021

Ta có : \(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\)(x;y \(\ne\)0)

<=> \(\frac{x+y}{xy}=\frac{1}{4}\)

<=> 4(x + y) = xy

<=> xy - 4x - 4y =0

<=> x(y - 4) - 4y + 16 = 16

<=> x(y - 4) - 4(y - 4) = 16

<=> (x - 4)(y - 4) = 16

Ta có 16 = 1.16 = 4.4 = (-4).(-4) = (-1).(-16)

Lập bảng xét các trường hợp

x - 41164-4-16-1
y - 41614-4-1-16
x5 (tm)20 (tm)8(tm) 0(loại)-12(loại)3
y20 (tm)5 (tm)8 (tm)0(loại)3-12(loại)

Vây các cặp (x;y) thỏa mãn là (5;20) ; (20;5) ; (8;8)

19 tháng 4 2020

b) chia cả 2 vế cho xyz>0 ta được: \(\frac{2}{yz}+\frac{2}{zx}+\frac{2}{xy}+\frac{9}{xyz}=3\)

không mất tính tổng quát, giả sử: \(x\ge y\ge z\ge1\). Ta có:

\(3=\frac{2}{yz}+\frac{2}{zx}+\frac{2}{xy}+\frac{9}{xyz}\le\frac{15}{z^3}\Rightarrow z^3\le5\Rightarrow z=1\)

\(z=1\Rightarrow2x+2y+11=3xyz\Rightarrow3=\frac{2}{y}+\frac{2}{x}+\frac{1}{xy}\le\frac{15}{y^2}\Rightarrow y^2\le5\)

\(\Rightarrow\orbr{\begin{cases}y^2=1\\y^2=4\end{cases}\Leftrightarrow\orbr{\begin{cases}y=1;x=1\\y=2;x=\frac{15}{4}\end{cases}}}\)

ĐCĐK và kết luận

Vậy (1;1;13);(13;1;1);(1;13;1)

27 tháng 11 2018

1/ Ta có

 \(x^2+9x+20=x^2+4x+5x+20=x\left(x+4\right)+5\left(x+4\right)=\left(x+4\right)\left(x+5\right)\)

Tương tự

\(x^2+11x+30=\left(x+5\right)\left(x+6\right)\)

\(x^2+13x+42=\left(x+6\right)\left(x+7\right)\)

Đk: x khác 4, 5, 6, 7

\(\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\frac{\left(x+5\right)-\left(x+4\right)}{\left(x+4\right)\left(x+5\right)}+\frac{\left(x+6\right)-\left(x+5\right)}{\left(x+5\right)\left(x+6\right)}+\frac{\left(x+7\right)-\left(x+6\right)}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\) EM tự làm tiếp nhé

27 tháng 11 2018

em cần đoạn tiếp mak

23 tháng 7 2019

\(x^3-y^3=xy+61\)

\(\Leftrightarrow27x^3-27y^3-27xy-1=1646\)

\(\Leftrightarrow\left(3x\right)^3+\left(-3y\right)^3+\left(-1\right)^3-3.3x.\left(-3y\right).\left(-1\right)=1646\)

Áp dụng hđt sau \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)đc

\(\left(3x-3y-1\right)\left(9x^2+9y^2+1+9xy-3y+3x\right)=1646\)

CÓ \(1646=1.1646=2.823\)

Mà \(\hept{\begin{cases}3x-3y-1< 9x^2+9y^2+1+9xy-3y+3x\\3x-3y-1\equiv2\left(mod3\right)\end{cases}}\)

\(\Rightarrow3x-3y-1=2\)

\(\Rightarrow x=y+1\)

THay vào đề bài

\(\left(y+1\right)^3-y^3=\left(y+1\right)y+61\)

\(\Leftrightarrow y^2+y-30=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=5\left(tm\right)\\y=-6\left(loai\right)\end{cases}}\)

VỚi y = 5 thì x = y +  1 = 6

19 tháng 5 2021

sửa lại đề bài : Tìm nghiệm nguyên dương