Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) chia cả 2 vế cho xyz>0 ta được: \(\frac{2}{yz}+\frac{2}{zx}+\frac{2}{xy}+\frac{9}{xyz}=3\)
không mất tính tổng quát, giả sử: \(x\ge y\ge z\ge1\). Ta có:
\(3=\frac{2}{yz}+\frac{2}{zx}+\frac{2}{xy}+\frac{9}{xyz}\le\frac{15}{z^3}\Rightarrow z^3\le5\Rightarrow z=1\)
\(z=1\Rightarrow2x+2y+11=3xyz\Rightarrow3=\frac{2}{y}+\frac{2}{x}+\frac{1}{xy}\le\frac{15}{y^2}\Rightarrow y^2\le5\)
\(\Rightarrow\orbr{\begin{cases}y^2=1\\y^2=4\end{cases}\Leftrightarrow\orbr{\begin{cases}y=1;x=1\\y=2;x=\frac{15}{4}\end{cases}}}\)
ĐCĐK và kết luận
Vậy (1;1;13);(13;1;1);(1;13;1)
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
Ta có :
\(2^x.3^y-1\equiv5\left(mod6\right)\)
\(7^z\equiv1\left(mod6\right)\)
Suy ra Phương trình trên vô nghiệm
Số nào + lại chả được 1 số thuộc Z nhỉ
Đúng 100%
Đúng 100%
Đúng 100%
<=> x^2 + y^2 + z^2 - xy - 3y - 2z + 4 <= 0
<=> (x^2 - xy + 1/4y^2) + (3/4y^2 - 3y + 3) + (z^2 - 2z + 1) <= 0
<=> (x^2 - xy + 1/4y^2) + 3(1/4y^2 - y + 1) + (z^2 - 2z + 1) <=0
<=> (x-1/2y)^2 + 3(1/2y-1)^2 + (z-1)^2 <=0
Nhận xét: 3 cái bình phương đều >=0 với mọi x,y,z nên VT>=0 với mọi x,y,z. Để bất phương trình đúng thì VT=0 <=> 3 cái đồng thời = 0
<=> x = 1/2y và 1/2y = 1 và z = 1.
Bạn giải 3 phương trình trên => x = 1, y = 2, z = 1.
\(VD1\)
Giả sử \(x\le y\Rightarrow\sqrt{x}\le\sqrt{y}\)
\(\Rightarrow2\sqrt{x}\le\sqrt{x}+\sqrt{y}=9\)
\(\Rightarrow\sqrt{x}\le4,5\)
\(\Rightarrow x\le4,5^2\)
\(\Rightarrow x\le20,25\)
\(\Rightarrow x\in\left\{0,1,4,9,16\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{0,1,2,3,4\right\}\)
TH1 : \(x=0\Rightarrow\sqrt{x}=0\Rightarrow\sqrt{y}=9\Rightarrow y=81\)
TH2 : \(x=1\Rightarrow\sqrt{x}=1\Rightarrow\sqrt{y}=8\Rightarrow y=64\)
Th3 : \(x=4\Rightarrow\sqrt{x}=2\Rightarrow\sqrt{y}=7\Rightarrow y=49\)
Th4 : \(x=9\Rightarrow\sqrt{x}=3\Rightarrow\sqrt{y}=6\Rightarrow y=36\)
Th5 : \(x=16\Rightarrow\sqrt{x}=4\Rightarrow\sqrt{y}=5\Rightarrow y=25\)
Vì x , y có vai trò như nhau nên các trường hợp còn lại chỉ là đổi chỗ giữa x và y . ( vd y = 0 thì x = 81 )
KL....
VD2: Ta có:
x+y+z=xyz ( 1 )
Chia 2 vế của ( 1 ) cho xyz\(\ne\)0 ta đc:
\(\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=1\)
Giả sử \(x\ge y\ge z\ge1\)thì ta có:
\(1=\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}\le\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{z^2}=\frac{3}{z^2}\)
\(\Rightarrow1\le\frac{3}{z^2}\Rightarrow z^2\le3\Leftrightarrow z=1\)
Thay z=1 vào ( 1 ) ta đc:
x+y+1=xy
\(\Leftrightarrow\)xy -x - y = 1
\(\Leftrightarrow\)x ( y - 1 ) - ( y - 1 ) = 2
\(\Leftrightarrow\)( x - 1 ) ( y - 1 ) =2
Mà \(x-1\ge y-1\)nên \(\hept{\begin{cases}x-1=2\\y-1=1\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}}\)
Vậy nghiệm dương của phương trình là các hoán vị của 1, 2, 3
ko phải bài của mk nên bn ko tick cx đc,mk chỉ đăng lên để giúp bn thôi