Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x + 1 = \(\frac{1}{3}.\) y - 3
<=> x - \(\frac{1}{3}.\)y= (- 3) - 1
<=> x - \(\frac{1}{3}.\)y= - 4 <=> x = \(\frac{1}{3}.\)y - 4
ta thấy:
x | 1 | 2 | 3............ |
y | 15 | 18 | 21.......... |
xn-1(x+y)-y(xn-1+yn-1)
=xn-1+1+xn-1y-xn-1y-yn-1+1
=xn+xn-1y-xn-1y-yn
=xn-yn
Ta có:
\(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)
\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)
Đặt \(t=x^2+5xy+5y^2\) ta đc:
\(A=\left(t-y^2\right)\left(t+y^2\right)+y^4\)
\(=t^2-y^4+y^4\)
\(=t^2=\left(x^2+5xy+5y^2\right)^2\)
Vì \(x,y,z\in Z\) nên \(x^2\in Z;5xy\in Z;5y^2\in Z\)
\(\Rightarrow x^2+5xy+5y^2\in Z\)
Đpcm
7z = 2x . 3y - 1 (*)
Vì x, y nguyên dương nên 2x . 3y \(⋮\) 3 \(\Rightarrow\) 2x . 3y - 1 \(\equiv\) 2 (mod 3) (1)
Ta có: 7x \(\equiv\) 1x (mod 3) \(\equiv\) 1 (mod 3) (2)
Từ (*), (1), (2) \(\Rightarrow\) Phương trình vô nghiệm
a)11x-7<8x+7
<-->11x-8x<7+7
<-->3x<14
<--->x<14/3 mà x nguyên dương
---->x \(\in\){0;1;2;3;4}
b)x^2+2x+8/2-x^2-x+1>x^2-x+1/3-x+1/4
<-->6x^2+12x+48-2x^2+2x-2>4x^2-4x+4-3x-3(bo mau)
<--->6x^2+12x-2x^2+2x-4x^2+4x+3x>4-3+2-48
<--->21x>-45
--->x>-45/21=-15/7 mà x nguyên âm
----->x \(\in\){-1;-2}