Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(\frac{3}{2}x^2+y^2+z^2+yz=1\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2zx+z^2\right)=2\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)
\(\Rightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)
Suy ra MIN A = \(-\sqrt{2}\)khi \(x=y=z=-\frac{\sqrt{2}}{3}\)
4. \(\sqrt{x}+\sqrt{y}=6\sqrt{55}\)
\(6\sqrt{55}\) là số vô tỉ, suy ra vế trái phải là các căn thức đồng dạng chứa \(\sqrt{55}\)
Đặt \(\sqrt{x}=a\sqrt{55};\sqrt{y}=b\sqrt{55}\) với \(a,b\in N\)
\(\Rightarrow a+b=6\)
Xét các TH:
a = 0 => b = 6
a = 1 => b = 5
a = 2 => b = 4
a = 3 => b = 3
a = 4 => b = 2
a = 5 => b = 1
a = 6 => b = 0
Từ đó dễ dàng tìm đc x, y
1.
2. x^2 + 3 = 5y
Hình học hình học:
- Tính chất
Mã mở
hình thức thay thế:
Giải pháp thực sự:
Mã mở
Dung dịch:
- Giải pháp từng bước
Mã mở
Dẫn xuất tiềm ẩn:
- Hơn
\(\left(x,y\right)\rightarrow\left(a,b\right)\)
\(+,a=0\Rightarrow b^2=b\Leftrightarrow a^2=a\Rightarrow\left[{}\begin{matrix}a=0\\a=1\end{matrix}\right.\)
\(tt:b=0\Rightarrow\left[{}\begin{matrix}a=1\\a=0\end{matrix}\right.\)
\(+,a;b\ne0\Rightarrow a^2\ge a;b^2\ge b\left("="\Leftrightarrow a=1;b=1\right)ma:a^2+b^2=a+b\Rightarrow a=b=1\)
vậy:..
a strange way to solve...
1) \(x^2+y^2=x+y\)
\(\Leftrightarrow x^2-x+y^2-y=0\)
Coi phương trình trên là pt bậc 2 với ẩn là x.
+) Xét \(x=0\Leftrightarrow y=0\)( thỏa )
+) Xét \(x\ne0\)
Để pt có nghiệm thì \(\Delta\ge0\)
\(\Leftrightarrow1^2-4\left(y^2-y\right)\ge0\)
\(\Leftrightarrow1-4y^2+4y\ge0\)
\(\Leftrightarrow4y^2-4y-1\le0\)
\(\Leftrightarrow\left(2y-1\right)^2\le2\)
\(\Leftrightarrow0\le\left(2y-1\right)^2\le2\)
Vì y nguyên nên \(2y-1\) nguyên
Do đó \(\left(2y-1\right)^2\in\left\{0;1\right\}\)
\(\Leftrightarrow2y-1\in\left\{0;1\right\}\)
\(\Leftrightarrow\left[{}\begin{matrix}y=\frac{1}{2}\left(loai\right)\\y=1\left(thoa\right)\end{matrix}\right.\)
Khi \(y=1\) ta có \(pt\Leftrightarrow x^2+1=x+1\)
\(\Leftrightarrow x^2-x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loai\right)\\x=1\left(chon\right)\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left\{\left(0;0\right);\left(1;1\right);\left(0;1\right);\left(1;0\right)\right\}\)
Hết nghiệm chưa ?