\(\left(\sqrt{1-cosx}+\sqrt{cosx}\right)cos2x=\frac{1}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 7 2019

ĐKXĐ: \(cosx\ge0\)

\(\Leftrightarrow\left(\sqrt{1-cosx}+\sqrt{cosx}\right)cos2x=sin2x.cos2x\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\\sqrt{1-cosx}+\sqrt{cosx}=sin2x\end{matrix}\right.\)

TH1: \(cos2x=0\Rightarrow2x=\frac{\pi}{2}+k\pi\Rightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)

Kết hợp điều kiện \(cosx\ge0\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k2\pi\\x=-\frac{\pi}{4}+k2\pi\end{matrix}\right.\)

TH2: \(\sqrt{1-cosx}+\sqrt{cosx}=sin2x\)

Ta có \(VT=\sqrt{1-cosx}+\sqrt{cosx}\ge\sqrt{1-cosx+cosx}=1\)

\(VP=sin2x\le1\)

\(\Rightarrow VT\ge VP\)

Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}sin2x=1\\\left[{}\begin{matrix}cosx=0\\cosx=1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow ptvn\)