Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\) \(\left(x^2+3x-4\right)^2+4\left(x^2+3x-4\right)+4=x^2+4x+4\)
\(\Leftrightarrow\) \(\left(x^2+3x-2\right)^2=\left(x+2\right)^2\)
\(\Leftrightarrow\) \(\begin{cases}x^2+3x-2=x+2\\x^2+3x-2=-x+2\end{cases}\)
\(\Leftrightarrow\) \(\begin{cases}x^2+2x-4=0\\x^2+4x=0\end{cases}\)
\(\Leftrightarrow\) \(x\in\left\{-1\pm\sqrt{5};-4;0\right\}\)
Vậy phương trình đã cho có tập nghiệm T =\(\left\{-1\pm\sqrt{5};-4;0\right\}\)
a, \(\left|5x-4\right|\ge6\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-4\ge6\\5x-4\le-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge2\\x\le-\dfrac{2}{5}\end{matrix}\right.\)
a) <=> (5x - 2)2 ≥ 62 <=> (5x – 4)2 – 62 ≥ 0
<=> (5x - 4 + 6)(5x - 4 - 6) ≥ 0 <=> (5x + 2)(5x - 10) ≥ 0
Bảng xét dấu:
Từ bảng xét dấu cho tập nghiệm của bất phương trình:
T = ∪ [2; +∞).
b) <=>
<=>
<=>
<=>
Tập nghiệm của bất phương trình T = (-∞; - 5) ∪ (- 1; 1) ∪ (1; +∞).
Đặt t=\(x+\frac{5+3}{2}=x+4\)
PT trên trở thành:
(t+1)4+(t-1)4=16
<=>2t4+12t2+2=16
<=>2t4+12t2-14=0(1)
Đặt y=t2(y\(\ge\) 0)=> PT(1) trở thành: 2y2+12y-14=0(2)
Ta có: a+b+c=2+12-14=0
=>PT(2) có 2 nghiệm phân biệt: \(y_1=1\left(nhận\right);y_2=-7\left(loại\right)\)
y=1 =>t2=1 =>t=1 hoặc t=-1
Với t=1 =>x=-3
Với t=-1 =>x=-5
Vậy S={-3;-5}
Đặt \(t=x+4\), phương trình ban đầu trở thành :
\(\left(t+1\right)^4+\left(t-1\right)^4=16\Leftrightarrow t^4+6t^2-7=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}t^2=1\\t^2=-7\end{array}\right.\)
Phương trình \(t^2=-7\) vô nghiệm
Phương trình \(t^2=1\) cho ta 2 nghiệm \(t=1;t=-1\) do đó :
Phương trình ban đầu \(\Leftrightarrow\left[\begin{array}{nghiempt}x+4=-1\\x+4=1\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-5\\x=-3\end{array}\right.\)