\(\left(x+2\right)\left(3-4x\right)=x^2+4x+4...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2020

Từ biểu thức, ta suy ra:

(x+2)(3-4x)=(x+2)2

<=> (x+2)(3-4x)-(x+2)2=0

<=>(x+2)(3-4x-x-2)=0

<=>(x+2)(1-5x)=0

<=>x+2=0 hoặc 1-5x=0

<=>x=-2 hoặc x=1/5

Vậy phương trình có tập nghiệm S={-2;1/5}

4 tháng 3 2020

(x + 2)(3 - 4x) = x2 + 4x + 4

<=> 3x - 4x2 + 6 - 8x = x2 + 4x + 4

<=> -5x - 4x2 + 6 = x2 + 4x + 4

<=> 5x + 4x2 - 6 + x2 + 4x + 4 = 0

<=> 9x + 5x2 - 2 = 0

<=> 5x2 + 10x - x - 2 = 0

<=> 5x(x + 2) - (x + 2) = 0

<=> (x + 2)(5x - 1) = 0

<=> x + 2 = 0 hoặc 5x - 1 = 0

<=> x = -2 hoặc x = 1/5

4 tháng 7 2019

Lời giải :

a) \(x\left(x+2\right)=x\left(x+3\right)\)

\(\Leftrightarrow x\left(x+2\right)-x\left(x+3\right)=0\)

\(\Leftrightarrow x\left(x+2-x-3\right)=0\)

\(\Leftrightarrow x\cdot\left(-1\right)=0\)

\(\Leftrightarrow x=0\)

b) \(x\left(x+1\right)+x\left(x-3\right)=4x\)

\(\Leftrightarrow x\left(x+1\right)+x\left(x-3\right)-4x=0\)

\(\Leftrightarrow x\left(x+1+x-3-4\right)=0\)

\(\Leftrightarrow x\left(2x-6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

Vậy....

4 tháng 7 2019

a) \(x\left(x+2\right)=x\left(x+3\right)\)

\(\Leftrightarrow x\left(x+2\right)-x\left(x+3\right)=0\)

\(\Leftrightarrow x\left[\left(x+2\right)-\left(x+3\right)\right]=0\)

\(\Leftrightarrow x.\left(-1\right)=0\)

\(\Leftrightarrow x=0\)

1 tháng 3 2020

Giải :

\(x\left(x+2\right)+x\left(x-3\right)=4x\)

\(\Leftrightarrow x^2+2x+x^2-3x-4x=0\)

\(\Leftrightarrow\left(x^2+x^2\right)+\left(2x-3x-4x\right)=0\)

\(\Leftrightarrow2x^2-6x=0\)

\(\Leftrightarrow x(2x-6)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}}\)

Vậy \(S=\left\{0;3\right\}\).

#Hoa_2008

1 tháng 3 2020

x(x+2)+x(x-3)-4x=0

x(x+2+x-3-4)=0

x(2x-5)=0

=>x=0;x=5/2

easy

2 tháng 2 2020

\((3x-2)\left(\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}\right)=0\)

\(\Leftrightarrow3x-2=0\) hoặc \(\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}=0\)

  • \(3x-2=0\Leftrightarrow3x=2\Leftrightarrow x=\frac{2}{3}\) ;
  • \(\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}=0\Leftrightarrow\frac{2\left(x+3\right)}{7}=\frac{4x-3}{5}\Leftrightarrow10\left(x+3\right)=7\left(4x-3\right)\Leftrightarrow x=\frac{17}{6}\).

Vậy tập nghiệm của phương trình là \(S=\left\{\frac{2}{3};\frac{7}{16}\right\}\).

2 tháng 2 2020

\(\left(3x-2\right)\left(\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x=2\\\frac{2\left(x+3\right)}{7}=\frac{4x-3}{5}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\10\left(x+3\right)=7\left(4x-3\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{17}{6}\end{cases}}\)

vậy x=2/3 hoặc x=17/6

3 tháng 2 2021

1) Ta có: \(\left(x^2-1\right)^2-x\left(x^2-1\right)-2x^2=0\)

\(\Leftrightarrow\left[\left(x^2-1\right)^2+x\left(x^2-1\right)\right]-\left[2x\left(x^2-1\right)+2x^2\right]=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2+x-1\right)-2x\left(x^2+x-1\right)=0\)

\(\Leftrightarrow\left(x^2-2x-1\right)\left(x^2+x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-2x-1=0\\x^2+x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=2\\\left(x+\frac{1}{2}\right)^2=\frac{5}{4}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=\pm\sqrt{2}\\x+\frac{1}{2}=\pm\frac{\sqrt{5}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\pm\sqrt{2}\\x=-\frac{1\pm\sqrt{5}}{2}\end{cases}}\)

3 tháng 2 2021

2) Ta có: \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=0\)

\(\Leftrightarrow\left[\left(x^2+4x+8\right)^2+x\left(x^2+4x+8\right)\right]+\left[2x\left(x^2+4x+8\right)+2x^2\right]=0\)

\(\Leftrightarrow\left(x^2+4x+8\right)\left(x^2+5x+8\right)+2x\left(x^2+5x+8\right)=0\)

\(\Leftrightarrow\left(x^2+6x+8\right)\left(x^2+5x+8\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+4\right)\left(x^2+5x+8\right)=0\)

Vì \(x^2+5x+8=\left(x^2+5x+\frac{25}{4}\right)+\frac{7}{4}=\left(x+\frac{5}{2}\right)^2+\frac{7}{4}>0\)

\(\Rightarrow\orbr{\begin{cases}x+2=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)

Vậy x = -2 hoặc x = -4

27 tháng 7 2018

\(B=x^2-6x+y^2-2y+12=\left(x^2-6x+9\right)\left(y^2-2y+1\right)+2\)
\(B=\left(x-3\right)^2+\left(y-1\right)^2+2\text{ }\)
Ta thấy B lớn hơn hoặc bằng 2 suy ra GTNN của B là 2 
Dấu = xảy ra khi x=3; y=1
\(C=2x^2-6x=\left(2x^2-6x+4,5\right)-4,5=2\left(x^2-3x+2,25\right)-4,5\)
\(C=2\left(x-1,5\right)^2-4,5\)
Ta thấy C luôn luôn lớn hơn hoặc bằng -4,5 nên GTNN của C là -4,5 
Dấu = xảy ra khi x=1,5
Tối mình full cho còn giờ mình đi đá bóng đây

27 tháng 7 2018

1) \(D=\frac{2016}{-4x^2+4x-5}\). Để D đạt giá trị nhỏ nhất suy ra \(-4x^2+4x-5\)đạt giá trị lớn nhất. 
Ta có \(-4x^2+4x-5=-4x^2+4x-1-4=\left(-4x^2+4x-1\right)-4\)
\(-4\left(x^2-x+\frac{1}{4}\right)-4=-4\left(x-\frac{1}{2}\right)^2-4\).
Ta Thấy:\(-4\left(x-\frac{1}{2}\right)^2\) bé hơn hoặc bằng 0 nên \(-4\left(x-\frac{1}{2}\right)^2-4\)bé hơn hoặc bằng -4
nên ..... bạn tự kết luận

27 tháng 7 2019

\(\left(3x-2\right)\left(\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\\frac{2\left(x+3\right)}{7}-\frac{4x-3}{5}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=2\\\frac{2\left(x+3\right)}{7}=\frac{4x-3}{5}\end{cases}}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\\frac{2\left(x+3\right)}{7}=\frac{4x-3}{5}\end{cases}}\)

Giải \(\frac{2\left(x+3\right)}{7}=\frac{4x-3}{5}\)

\(\Leftrightarrow5.2\left(x+3\right)=7\left(4x-3\right)\)

\(\Leftrightarrow10x+30=28x-21\)

\(\Leftrightarrow10x-28x=-21-30\)

\(\Leftrightarrow-18x=-51\)

\(\Leftrightarrow x=\frac{17}{6}\)

27 tháng 7 2019

sex em ko

28 tháng 6 2019

Giải :

\(\left(x+1\right)\left(2x^2-4x\right)=0\)

\(\Leftrightarrow\left(x+1\right)\cdot2x\left(x-2\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+1=0\\2x=0\\x-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\x=0\\x=2\end{cases}}\)

Vậy tập nghiệm của phương trình là : \(S=\left\{-1;0;2\right\}\).

28 tháng 6 2019

\(\left(x+1\right)\left(2x^2-4x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x^2-4x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x\left(2x-4\right)=0\end{cases}}\Leftrightarrow x\in\left\{0;1;2\right\}\)

23 tháng 12 2018

\(a,x^2-x-6=0\)

\(x^2-3x+2x-6=0\)

\(x\left(x-3\right)+2\left(x-3\right)=0\)

\(\left(x+2\right)\left(x-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)

\(b,x^2+5x+6=0\)

\(x^2+2x+3x+6=0\)

\(x\left(x+2\right)+3\left(x+2\right)=0\)

\(\left(x+3\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=-3\\x=-2\end{cases}}\)

còn c, d nữa giúp mik luôn đi