\(\left(x+2\right)^3+\left(\frac{x+2}{x+1}\right)^3=16\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2019

a) \(\frac{x^2-2x+2}{x^2+x+1}-\frac{x^2}{x^2+x+1}=\frac{3}{\left(x^4+x^2+1\right)x}\)

\(\Leftrightarrow\frac{x^2-2x+2}{x^2-x+1}.x\left(x^2-x+1\right)\left(x^2+x+1\right)-\frac{x^2}{x^2+x+1}.x\left(x^2-x+1\right)\left(x^2+x+1\right)\)\(=\frac{3}{\left(x^4+x^2+1\right)x}.x\left(x^2-x+1\right)\left(x^2+x+1\right)\)

\(\Leftrightarrow x\left(x^2-2x+2\right)\left(x^2+x+1\right)\left(x^4+x^2+1\right)-x^3\left(x^2-x+1\right)\left(x^4+x^2+1\right)\)\(=3\left(x^2-x+1\right)\left(x^2+x+1\right)\)

\(\Rightarrow x=\frac{3}{2}\)

b) làm tương tự nhé

16 tháng 8 2016

a) \(\frac{5-x}{4x^2-8x}\) + \(\frac{7}{8x}\) = \(\frac{x-1}{2x\left(x-2\right)}\) +\(\frac{1}{8x-16}\)                               ĐKXĐ : x #0, x#2, x#-2

<=> \(\frac{5-x}{4x\left(x-2\right)}\) + \(\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}\) + \(\frac{1}{8\left(x-2\right)}\)

<=> \(\frac{2\left(5-x\right)}{8x\left(x-2\right)}+\frac{7\left(x-2\right)}{8x\left(x-2\right)}=\frac{4\left(x-1\right)}{8x\left(x-2\right)}+\frac{x}{8x\left(x-2\right)}\)

=> 10 - 2x + 7x - 14 = 4x - 4 + x

<=>-2x + 7x - 4x + x  = -4 - 10 + 14

<=>x=-14

4 tháng 4 2020

a, ĐKXĐ : \(\left\{{}\begin{matrix}x\ne\pm2\\x\ne0\end{matrix}\right.\)

Ta có : \(\frac{x-4}{x\left(x+2\right)}-\frac{1}{x\left(x-2\right)}=-\frac{2}{\left(x+2\right)\left(x-2\right)}\)

=> \(\frac{\left(x-4\right)\left(x-2\right)}{x\left(x+2\right)\left(x-2\right)}-\frac{x+2}{x\left(x-2\right)\left(x+2\right)}=-\frac{2x}{x\left(x+2\right)\left(x-2\right)}\)

=> \(\left(x-4\right)\left(x-2\right)-x-2=-2x\)

=> \(x^2-4x-2x+8-x-2=-2x\)

=> \(x^2-5x+6=0\)

=> \(\left(x-2\right)\left(x-3\right)=0\)

=> \(\left[{}\begin{matrix}x=2\\x=3\left(TM\right)\end{matrix}\right.\)

=> x = 3 .

Vậy phương trình trên có tập nghiệm là \(S=\left\{3\right\}\)

b, ĐKXĐ : \(x\ne0,-3,-6,-9,-12\)

Ta có : \(\frac{1}{x\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+9\right)}+\frac{1}{\left(x+9\right)\left(x+12\right)}=\frac{1}{16}\)

=> \(\frac{1}{x}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+9}+\frac{1}{x+9}-\frac{1}{x+12}=\frac{1}{16}\)

=> \(\frac{1}{x}-\frac{1}{x+12}=\frac{1}{16}\)

=> \(\frac{x+12}{x\left(x+12\right)}-\frac{x}{x\left(x+12\right)}=\frac{1}{16}\)

=> \(x\left(x+12\right)=192\)

=> \(x^2+12x-192=0\)

=> \(x^2+2x.6+36-228=0\)

=> \(\left(x+6\right)^2=288\)

=> \(\left[{}\begin{matrix}x=\sqrt{288}-6\\x=-\sqrt{288}-6\end{matrix}\right.\) ( TM )

Vậy phương trình có tập nghiệm là \(S=\left\{\pm\sqrt{288}-6\right\}\)

11 tháng 3 2018

ĐKXĐ: \(x\ne0;x\ne1;x\ne3\)

Ta có: \(\frac{1}{x\left(x-1\right)}+\frac{2}{\left(x-1\right)\left(x-3\right)}=\frac{1}{x-3}+2\)

Qui đồng rồi khử mẫu ta được:

   \(x-3+2x=x\left(x-1\right)+2x\left(x-1\right)\left(x-3\right)\)

\(\Leftrightarrow x-3+2x=x^2-x+2x^3-8x^2+6x\)

\(\Leftrightarrow-2x^3-x^2+8x^2+x+x-6x=3\)

\(\Leftrightarrow-2x^3+2x^2-4x=3\)

giải phương trình tiếp là ra

3 tháng 3 2020

\(a,\left(2x^2+1\right)+4x>2x\left(x-2\right)\)

\(\Leftrightarrow2x^2+1+4x>2x^2-4x\)

\(\Leftrightarrow4x+4x>-1\)

\(\Leftrightarrow8x>-1\)

\(\Leftrightarrow x>-\frac{1}{8}\)

\(b,\left(4x+3\right)\left(x-1\right)< 6x^2-x+1\)

\(\Leftrightarrow4x^2-4x+3x-3< 6x^2-x+1\)

\(\Leftrightarrow4x^2-x-3< 6x^2-x+1\)

\(\Leftrightarrow4x^2-6x^2< 1+3\)

\(\Leftrightarrow-2x^2< 4\)

\(\Leftrightarrow x^2>2\)

\(\Leftrightarrow x>\pm\sqrt{2}\)

3 tháng 3 2020

a, \(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\)

\(=>\frac{1-x+x+1}{x+1}+2=\frac{1}{x+1}+2\)

\(=>\frac{2}{x+1}=\frac{1}{x+1}\)

\(=>2x+2=x+1\)

\(=>2x-x=1-2=-1\)

\(=>x=-1\)

vậy nghiệm của phương trình trên là {-1}

3 tháng 3 2020

À quên ĐKXĐ của câu a là \(x\ne-1\)

Nên \(x\in\varnothing\)nhé :v