Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x3 + 3x2 + 6x + 5 = 02
<=> 2x3 + x2 + 5x + 2x2 + x + 5 = 0
<=> x(2x2 + x + 5) + (2x2 + x + 5) = 0
<=> (2x2 + x + 5)(x + 1) = 0
<=> x + 1 = 0 (vì 2x2 + x + 5 \(\ge\) 4,875 > 0 \(\forall\) x)
<=> x = - 1
Vậy tập nghiệm của pt là \(S=\left\{-1\right\}\)
b) 4x4 + 12x3 + 5x2 - 6x - 15 = 0
<=> 4x4 + 10x3 + 2x3 + 5x2 - 6x - 15 = 0
<=> 2x3(2x + 5) + x2(2x + 5) - 3(2x + 5) = 0
<=> (2x + 5)(2x3 + x2 - 3) = 0
<=> (2x + 5)(2x3 - 2x2 + 3x2 - 3) = 0
<=> (2x + 5)(x - 1)(2x2 + 3x + 3) = 0
<=> (2x + 5)(x - 1)[x2 + (x + 3/2)2 + 3/4]= 0
Mà x2 + (x + 3/2)2 + 3/4 > 0\(\forall x\)
\(\Rightarrow\left[\begin{matrix}2x+5=0\\x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=-\frac{5}{2}\\x=1\end{matrix}\right.\)
Vậy ...
2.( x - 2 ) + 1 = x - 1
\(\Leftrightarrow\) 2x - 4 + 1 - x + 1 = 0
\(\Leftrightarrow\)x - 2 = 0
\(\Leftrightarrow\)x = 2
Vậy phương trình có nghiệm là: x = 2
\(2\left(x-2\right)+1=x-1\)
\(\Leftrightarrow2x-4+1-x+1=0\)
\(\Leftrightarrow x-2=0\)
vậy x = 2
\(\Rightarrow x=2\)
( x - 2 ).( x + 3 )2 - ( x - 2 ).(x - 1)2 = 0
(=) ( x - 2 ).[ ( x + 3 )2 - ( x - 1 )2 ] = 0
(=) ( x - 2).[ x2 + 6x + 9 - x2 + 2x - 1] = 0
(=) ( x - 2 ) .( 8x + 8 ) = 0
(=) \(\orbr{\begin{cases}x-2=0\\8x+8=0\end{cases}}\)(=) \(\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
Vậy phương trình có nghiệm là : x = 2 , -1
b) 9x2 - 6x + 1 = 4x2
(=) 9x2 - 6x + 1 - 4x2 = 0
(=) 5x2 - 6x + 1 = 0
(=) 5x2 - 5x - x + 1 = 0
(=) 5x.( x - 1 ) - (x - 1) = 0
(=) ( x - 1 ).( 5x - 1) = 0
(=)\(\orbr{\begin{cases}x-1=0\\5x-1=0\end{cases}}\)(=) \(\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}\)
Vậy phương trình có nghiệm là : x = 1 , \(\frac{1}{5}\)
c) ( x - 3 ) - \(\frac{\left(x-3\right)\left(2x+1\right)}{3}\)= 1
(=) \(\frac{3\left(x-3\right)}{3}\)\(-\)\(\frac{\left(x-3\right)\left(2x+1\right)}{3}\)= \(\frac{3}{3}\)
(=) 3.( x - 3) - ( x - 3 ).( 2x +1 ) = 3
(=) 3x - 9 - 2x2 +5x +3 -3 = 0
(=) -2x2 +8x -9 = 0 (loại )
Vậy phương trình vô nghiệm
d) x2 + 6x - 7 =0
(=) x2 +7x - x - 7 = 0
(=) x.( x + 7 ) - ( x + 7 ) = 0
(=) ( x - 1 ) .( x+7 ) = 0
(=) \(\orbr{\begin{cases}x-1=0\\x+7=0\end{cases}}\)(=) \(\orbr{\begin{cases}x=1\\x=-7\end{cases}}\)
Vậy phương trình có nghiệm là : x = 1 , -7
1) Ta có: \(\left(x^2-1\right)^2-x\left(x^2-1\right)-2x^2=0\)
\(\Leftrightarrow\left[\left(x^2-1\right)^2+x\left(x^2-1\right)\right]-\left[2x\left(x^2-1\right)+2x^2\right]=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2+x-1\right)-2x\left(x^2+x-1\right)=0\)
\(\Leftrightarrow\left(x^2-2x-1\right)\left(x^2+x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-2x-1=0\\x^2+x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=2\\\left(x+\frac{1}{2}\right)^2=\frac{5}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=\pm\sqrt{2}\\x+\frac{1}{2}=\pm\frac{\sqrt{5}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\pm\sqrt{2}\\x=-\frac{1\pm\sqrt{5}}{2}\end{cases}}\)
2) Ta có: \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=0\)
\(\Leftrightarrow\left[\left(x^2+4x+8\right)^2+x\left(x^2+4x+8\right)\right]+\left[2x\left(x^2+4x+8\right)+2x^2\right]=0\)
\(\Leftrightarrow\left(x^2+4x+8\right)\left(x^2+5x+8\right)+2x\left(x^2+5x+8\right)=0\)
\(\Leftrightarrow\left(x^2+6x+8\right)\left(x^2+5x+8\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+4\right)\left(x^2+5x+8\right)=0\)
Vì \(x^2+5x+8=\left(x^2+5x+\frac{25}{4}\right)+\frac{7}{4}=\left(x+\frac{5}{2}\right)^2+\frac{7}{4}>0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)
Vậy x = -2 hoặc x = -4
\(\sqrt{\left(2x+3\right)^2}=x-5\)
\(\Rightarrow2x+3=x-5\)
\(\Rightarrow2x-x=-5-3\)
\(\Rightarrow x=-8\)
\(\sqrt{\left(2x+3\right)^2}=x-5\)
\(\Leftrightarrow2x+3=x-5\)
\(\Leftrightarrow2x-x=-5-3\)
\(\Leftrightarrow x=-8\)
Theo đề bài ta có :
\(\frac{x\left(3-x\right)}{x+1}\cdot\left(x+\frac{\left(3-x\right)}{x+1}\right)=2\)
=> \(\frac{\left(3x-x^2\right)}{x+1}\cdot\frac{\left(3-x+x^2+x\right)}{x+1}=2\)
=> \(\left(3x-x^2\right)\left(x^2+3\right)=2\left(x+1\right)^2\)
=> \(3x^3+9x-x^4-3x^2=2x^2+4x+2\)
=> \(3x^3+\left(9x-4x\right)+\left(-3x^2-2x^2\right)-x^4-2=0\)
=> \(3x^3+5x-5x^2-x^4-2=0\)
=> \(5x\left(1-x\right)+x^3\left(1-x\right)+2\left(x^3-1\right)=0\)
=> \(5x\left(1-x\right)+x^3\left(1-x\right)+2\left(x-1\right)\left(x^2+x+1\right)=0\)
=> \(5x\left(1-x\right)+x^3\left(1-x\right)-2\left(1-x\right)\left(x^2+x+1\right)=0\)
=> \(\left(1-x\right)\left(5x+x^3-2x^2-2x-2\right)=0\)
=> \(\left(1-x\right)\left(3x+x^3-2x^2-2\right)=0\)
=> \(\left(1-x\right)\left(x^3-x^2-x^2+x+2x-2\right)=0\)
=> \(\left(1-x\right)\left(x^2\left(x-1\right)-x\left(x-1\right)+2\left(x-1\right)\right)=0\)
=> \(\left(1-x\right)\left(x-1\right)\left(x^2-x+2\right)=0\)
Ta Thấy :
\(\left(x^2-x+2\right)=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}>0\)
=> \(\hept{\begin{cases}1-x=0\\x-1=0\end{cases}}\)
=> x = 1
Giải :
\(\left(x^2+1\right)\left(x^2+4x+4\right)=0\)
\(\Leftrightarrow x^2+4x+4=0\: \text{ }\left(\text{vì}\:x^2+1\ne0\right)\: \)
\(\Leftrightarrow\left(x+2\right)^2=0\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
Vậy tập nghiệm của phương trình là : \(S=\left\{-2\right\}\).
\(\left(x^2+1\right)\left(x^2+4x+4\right)=0\)
\(\Rightarrow x^2+4x+4=0\left(x^2+1>0\right)\)
\(\Rightarrow\left(x+2\right)^2=0\)
\(\Rightarrow x+2=0\)
\(\Rightarrow x=-2\)