\(\left(x^2-3x+2\right).\sqrt{\frac{x+3}{x-1}}=\frac{-1}{2}x^3+\frac{15}{2}x-1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2019

\(\left(x^2-3x+2\right)\sqrt{\frac{x+3}{x-1}}=-\frac{x^3}{2}+\frac{15x}{2}-11\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\sqrt{\frac{x+3}{x-1}}=-\frac{1}{2}\left(x-2\right)\left(x^2+2x-11\right)\)

\(\Leftrightarrow\left(x-2\right)\left[2\left(x-1\right)\sqrt{\frac{x+3}{x-1}}+\left(x^2+2x-11\right)\right]=0\)

Làm nốt

17 tháng 1 2017

Nhìn không đủ chán rồi không dám động vào

17 tháng 1 2017

Viết đề kiểu gì v @@

31 tháng 8 2018

Sorry nha nhưng em mới học lớp 7 thôi à ~~

12 tháng 2 2020

Đặt \(u=\sqrt{10-x};v=\sqrt{3+x}\)

Phương trình trở thành \(u+v+2uv=17\)

\(\Rightarrow u+v=\sqrt{17}\)

đến đây thì EZ rồi

14 tháng 5 2019

ĐKXĐ: \(x\le-3\)hoặc 1 < x

(x2 - 3x +2)\(\sqrt{\frac{x+3}{x-1}}\)=\(\frac{-1}{2}x^3+\frac{15}{2}x-11\)

<=> (x - 1)(x - 2)\(\sqrt{\frac{x+3}{x-1}}\)=\(\frac{-1}{2}\left(x-2\right)\left(x^2+2x-11\right)\) (1)

+ TH1: x = 2 là nghiệm của phương trình (1).

+ TH2\(x\ne2\). Lấy 2 vế của phương trình (1) chia cho (x - 2), ta được:

(x - 1)\(\sqrt{\frac{x+3}{x-1}}\)=\(\frac{-1}{2}\left(x^2+2x-11\right)\)

Đến đây bạn tự giải tiếp.

18 tháng 5 2017

Câu 1/

\(\hept{\begin{cases}\frac{x^2}{\left(y+1\right)^2}+\frac{y^2}{\left(x+1\right)^2}=\frac{1}{2}\left(1\right)\\3xy-x-y=1\left(2\right)\end{cases}}\)

Xét PT (2) ta có:

\(\left(2\right)\Leftrightarrow3xy-y=1+x\)

\(\Leftrightarrow y=\frac{1+x}{3x-1}\)

\(\Leftrightarrow y+1=\frac{4x}{3x-1}\)

\(\Leftrightarrow\frac{x}{y+1}=\frac{3x-1}{4}\left(3\right)\)

Ta lại có:

\(y=\frac{1+x}{3x-1}\)

\(\Leftrightarrow\frac{y}{x+1}=\frac{1}{3x-1}\left(4\right)\)

Từ PT (1) ta có

\(\left(1\right)\Leftrightarrow\left(\frac{3x-1}{4}\right)^2+\left(\frac{1}{3x-1}\right)^2=\frac{1}{2}\)

\(\Leftrightarrow9x^4-12x^3-2x^2+4x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(3x+1\right)^2=0\)

Làm tiếp nhé

18 tháng 5 2017

Câu 2/

a/ \(x^2-1=3\sqrt{3x+1}\)

\(\Leftrightarrow\left(x^2-1\right)^2=\left(3\sqrt{3x+1}\right)^2\)

\(\Leftrightarrow x^4-2x^2-27x-8=0\)

\(\Leftrightarrow\left(x^2-3x-1\right)\left(x^2+3x+8\right)=0\)

Tới đây thì đơn giản rồi nhé

b/ \(\sqrt{2-x}+\sqrt{2+x}+\sqrt{4-x^2}=2\)

Đặt \(\hept{\begin{cases}\sqrt{2-x}=a\\\sqrt{2+x}=b\end{cases}\left(a,b\ge0\right)}\)

Thì ta có:

\(\hept{\begin{cases}a^2+b^2=4\\a+b+ab=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(a+b\right)^2-2ab=4\\\left(a+b\right)+ab=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a+b=2\\ab=0\end{cases}}\) hoặc \(\hept{\begin{cases}a+b=-4\\ab=6\end{cases}\left(l\right)}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{2-x}+\sqrt{2+x}=2\\\sqrt{4-x^2}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)

PS: Điều kiện xác định bạn tự làm nhé