Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+1)(x+2)(x+3)=x3-1
<=>x.(x+2)(x+3)+(x+2)(x+3)=x3-1
<=>(x2+2x)(x+3)+x.(x+3)+2.(x+3)=x3-1
<=>x2.(x+3)+2x.(x+3)+x2+3x+2x+6=x3-1
<=>x3+3x2+2x2+6x+x2+3x+2x+6=x3-1
<=>x3-x3+3x2+2x2+x2+6x+3x+2x+6+1=0
<=>6x2+17x+7=0
<=>6x2+3x+14x+7=0
<=>3x.(2x+1)+7.(2x+1)=0
<=>(2x+1)(3x+7)=0
<=>2x+1=0 hoặc 3x+7=0
<=>x=-1/2 hoặc x=-7/3
Vậy S={-1/2;-7/3}
đề bài : ĐK x khác 1
\(=>x^2\left(x-1\right)+x^2=8\left(x-1\right)^2\)
=>\(x^2\left(x^2-2x+1\right)+x^2-8\left(x^2-2x+1\right)=0\)
=>\(x^4-2x^3+x^2+x^2-8x^2+16x-8\)
\(=>x^4-2x^3-6x^2+16-8=0\)
\(=>x^3\left(x-2\right)-6x\left(x-2\right)+4\left(x-2\right)=0\)
\(=>\left(x-2\right)\left(x^3-6x+4\right)=0\)
=>\(\left(x-2\right)\left(x^3-4x-2x+4\right)=0\)
\(=>\left(x-2\right)\left(x-2\right)\left(x^2+2x-2\right)\)=0 ( phân tích bình thường là ra như này )
\(=>\orbr{\begin{cases}x=2\\x^2+2x-2=0.\Delta'=1+2=3=>x=-1\pm\sqrt{3}\end{cases}}\)( ko biết học ô học cái này chưa nx ??)
zậy
\(\left(2.x+1\right)^3=125\)
\(\left(2x+1\right)^3=5^3\)
\(\Rightarrow2x+1=5\)
\(2x=5-1\)
\(2x=4\)
\(x=\frac{4}{2}\)
\(x=2\)
(2.x+1)3=125
=> (2.x+1)3=53
=> 2.x+1=5
2.x =5-1
2.x =4
x = 4:2
x =2
a)\(\left(\frac{1}{3}\right)^{-1}-\left(-\frac{6}{7}\right)^0+\left(\frac{1}{2}\right)^4.2^3=3-1+\frac{1}{16}.8=3-1+\frac{1}{2}=\frac{5}{2}\\ \)
b)\(2^2.2^3.\left(\frac{2}{3}\right)^{-2}=2^5.\frac{9}{4}=72\)
c)\(\left(\frac{4}{3}\right)^{-2}.\left(\frac{3}{4}\right)^3:\left(\frac{-2}{3}\right)^{-3}=\left(\frac{3}{4}\right)^2.\left(\frac{3}{4}\right)^3:\left(\frac{-2}{3}\right)^{-3}=\left(\frac{3}{4}\right)^5:\left(\frac{3}{2}\right)^3=\frac{9}{128}\)
2)
\(3^{x+1}=9^x\Leftrightarrow3^x.3=9^x\Rightarrow3=9^x:3^x\Rightarrow3=3^x\Rightarrow x=1\)
\(\left(x-0,1\right)^2=6,25\Leftrightarrow\left(x-0,1\right)^2=2,5^2\Rightarrow\left(x-0,1\right)=2,5\Rightarrow x=2,5+0,1=2,6\)
\(3^{2x-1}=243\Leftrightarrow3^{2x-1}=3^5\Rightarrow2x-1=5\Rightarrow2x=6\Rightarrow x=3\)
\(\left(4x-3\right)^4=\left(4x-3\right)^2\Rightarrow x=1\)
\(\left(x^2-1\right)^2=4x+1\)
\(\Leftrightarrow x^4-2x^2+1=4x+1\)
\(\Leftrightarrow x^4-2x^2-4x=0\)
\(\Leftrightarrow x\left(x^3-2x-4\right)=0\)
\(\Leftrightarrow x\left(x^3-4x+2x-4\right)=0\)
\(\Leftrightarrow x\text{[}x\left(x^2-4\right)+2\left(x-2\right)\text{]}=0\)
\(\Leftrightarrow x\text{[}x\left(x-2\right)\left(x+2\right)+2\left(2x-2\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x^2+2x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)
Vậy phương trình có 2 nghiệm phân biệt x= 0 , x = 2