
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(\frac{5-x}{4x^2-8x}\) + \(\frac{7}{8x}\) = \(\frac{x-1}{2x\left(x-2\right)}\) +\(\frac{1}{8x-16}\) ĐKXĐ : x #0, x#2, x#-2
<=> \(\frac{5-x}{4x\left(x-2\right)}\) + \(\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}\) + \(\frac{1}{8\left(x-2\right)}\)
<=> \(\frac{2\left(5-x\right)}{8x\left(x-2\right)}+\frac{7\left(x-2\right)}{8x\left(x-2\right)}=\frac{4\left(x-1\right)}{8x\left(x-2\right)}+\frac{x}{8x\left(x-2\right)}\)
=> 10 - 2x + 7x - 14 = 4x - 4 + x
<=>-2x + 7x - 4x + x = -4 - 10 + 14
<=>x=-14

\(b,\left(x^2+x+4\right)+8x\left(x^2+x+4\right)+15x^2=0\)
\(< =>x^2+x+4+8x^3+8x^2+32x+15x^2=0\)
\(< =>8x^3+\left(8x^2+15x^2+x^2\right)+\left(x+32x\right)+4=0\)
\(< =>8x^3+24x^2+33x^2+4=0\)
Lớp 8 mới học nghiệm nguyên mà cái cày nghiệm vô tỉ nên xét vô nghiệm nhé
a, Đề lỗi
b, \(\left(x^2+x+4\right)+8x\left(x^2+x+4\right)+15x^2=0\)
\(\Leftrightarrow x^2+x+4+8x^3+8x^2+32x+15x^2=0\)
\(\Leftrightarrow24x^2+33x+4+8x^3=0\)
Bấm mấy đi : Mode + Set up + 5 ý
\(x=-0,13...\)

\(\left(x-5\right)\left(x-1\right)=2x\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x-5-2x\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)
Vậy............
\(5\left(x+3\right)\left(x-2\right)-3\left(x+5\right)\left(x+2\right)=0\)
\(\Leftrightarrow5\left(x^2+x-6\right)-3\left(x^2+7x+10\right)=0\)
\(\Leftrightarrow2x^2-16x-60=0\)
\(\Leftrightarrow x^2-8x-30=0\)
làm tiếp nhé!!!!!

a) \(3|x-3|-|3-x|=6\)
\(\Leftrightarrow3|x-3|-|x-3|=6\)
\(\Leftrightarrow2|x-3|=6\)
\(\Leftrightarrow|x-3|=3\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-3=3\\3-x=3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=0\end{cases}}\)
S={6;0}
b) Lập bảng xét dấu :
x | - 2 3 |
x + 2 | - 0 + \(|\) + |
x - 3 | - \(|\) - 0 + |
Xét x < -2,ta có :
3(3 - x) - (-x - 2) = -3
<=> 9 - 3x + x +2 = -3
<=> -2x +11 = -3
<=> -2x = -14
<=> x = 7 (loại)
Xét \(-2\le x< 3\), ta có :
3(3 - x) - (x + 2) = -3
<=> 9 - 3x - x - 2 = -3
<=> -4x + 7 = -3
<=> -4x = -10
<=> x = 2,5 (TM)
Xét \(x\ge3\), ta có :
3(x - 3) - (x + 2) = -3
<=> 3x - 9 - x - 2 = -3
<=> 2x -11 = -3
<=> 2x = 8
<=> x = 4 (TM)
Vậy S={2,5; 4}
c) \(\frac{4x-5}{x-2}>2\)(ĐKXĐ : x\(\ne\)2)
\(\Leftrightarrow\frac{4x-5}{x-2}-2>0\)
\(\Leftrightarrow\frac{4x-5-2\left(x-2\right)}{x-2}>0\)
\(\Leftrightarrow\frac{4x-5-2x+4}{x-2}>0\)
\(\Leftrightarrow\frac{2x-1}{x-2}>0\)
Lập bảng xét dấu :
x | \(\frac{1}{2}\) 2 |
2x-1 | - 0 + \(|\) + |
x-2 | - \(|\) - 0 + |
Vế trái | + 0 - \(||\) + |
Vậy \(S=\left\{x|2< x< \frac{1}{2}\right\}\)

a, (x+3)^2 + 2(x-1)^2 = (3x-7)(x-2)
<=> x^2 + 6x + 9 + 2x^2 - 4x + 2 = 3x^2 - 13x + 14
<=> 15x - 3 = 0
<=> x = 1/5
Vậy x=1/5 là nghiệm của phương trình
b, ( x - 4)( x - 3)= (x-4)^2
Đặt x - 4 = y ta có phương trình :
y(y +1 ) = y^2
<=> y^2+y= y^2
<=> y=0
=> x- 4 =0
<=> x=4
Vậy x=4 là nghiệm của phương trình

\(\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow\left(x-1\right)^2+\left(x-1\right)\left(x+1\right)=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow2x\left(x-1\right)=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow2x\left(x-1\right)+\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+3\right)=0\)
\(\Rightarrow x=\pm1\)
Giúp tớ mấy câu còn lại đi các cậu, tớ cần gấp lắm ạ ;;-;;

Bài làm:
Đặt \(\hept{\begin{cases}x-1=a\\x+2=b\end{cases}}\Rightarrow a+b=2x+1\)
\(Pt\Leftrightarrow a^3+b^3=\left(a+b\right)^3\)
\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3-a^3-b^3=0\)
\(\Leftrightarrow3ab\left(a+b\right)=0\)
\(\Leftrightarrow3\left(x-1\right)\left(x+2\right)\left(2x+1\right)=0\)
Đến đây giải PT tích ra ta được: \(x\in\left\{-2;-\frac{1}{2};1\right\}\)
(x - 2)(x + 3) = 50
=> x2 + 3x - 2x - 6 - 50 = 0
=> x2 + x - 56 = 0
=> x2 + 8x - 7x - 56 = 0
=> x(x + 8) - 7(x + 8) = 0
=> (x - 7)(x + 8) = 0
=> \(\orbr{\begin{cases}x-7=0\\x+8=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=7\\x=-8\end{cases}}\)
\(\left(x-2\right)\left(x+3\right)=50\)
\(x^2+x-6=50\)
\(x^2+x-56=0\)
\(x^2-7x+8x-56=0\)
\(x\cdot\left(x-7\right)-8\cdot\left(x-7\right)=0\)
\(\left(x-7\right)\cdot\left(x-8\right)=0\)
\(\orbr{\begin{cases}x-7=0\\x-8=0\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\x=8\end{cases}}}\)