Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk chỉ làm đc câu a) thôi còn câu b mk cũng đang hỏi.
Đặt \(4-x=a\); \(x-2=b\) \(\Rightarrow\) \(a+b=2\)
\(\Leftrightarrow\)\(\left(a^3+b^3\right)\left(a^2+b^2\right)-a^2b^2\left(a+b\right)=32\)
\(\Leftrightarrow\)\(\left[\left(a+b\right)^3-3ab\left(a+b\right)\right]\left[\left(a+b\right)^2-2ab\right]-a^2b^2\left(a+b\right)=32\)
thay \(a+b=2\) ta có:
\(\left(8-6ab\right)\left(4-2ab\right)-2\left(ab\right)^2=32\)
\(\Leftrightarrow\) \(32-40ab+10\left(ab\right)^2=32\)
\(\Leftrightarrow\)\(10ab\left(-4+ab\right)+32-32=0\)
\(\Leftrightarrow\)\(ab\left(ab-4\right)=0\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}ab=0\\ab-4=0\end{matrix}\right.\)
Với \(ab=0\) thì \(\left(4-x\right)\left(x-2\right)=0\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}4-x=0\\x-2=0\end{matrix}\right.\) \(\Rightarrow\) \(\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
Với \(ab-4=0\) thì \(\left(4-x\right)\left(x-2\right)-4=0\)
\(\Leftrightarrow\)\(6x-8-x^2-4=0\)
\(\Leftrightarrow\)\(6x-12-x^2=0\)
\(\Leftrightarrow\)\(-\left(x^2-6x+12\right)=0\)
\(\Leftrightarrow\)\(-\left(x^2-6x+9+3\right)=0\)
\(\Leftrightarrow\)\(-\left(x-3\right)^2-3=0\) ( vô lí )
Vậy pt có tập nghiệm \(S=\left\{2;4\right\}\)
a, \(\left(x^2+x\right)^2+4\left(x^2+x\right)-12=0\)
\(\Leftrightarrow x^4+2x^3+x^2+4x^2+4x+12=0\)
\(\Leftrightarrow x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12=0\)
\(\Leftrightarrow x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^3+3x^2+8x+12\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^3+2x^2+x^2+2x+6x+12\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)=0\)
có : \(x^2+x+6>0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}}\)
b, \(\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)-297=0\)
\(\Leftrightarrow\left[\left(x-1\right)\left(x+5\right)\right]\left[\left(x-3\right)\left(x+7\right)\right]-297=0\)
\(\Leftrightarrow\left(x^2+4x-5\right)\left(x^2+7x-21\right)-297=0\)
đặt \(x^2+4x-13=t\)
\(\Leftrightarrow\left(t+8\right)\left(t-8\right)-297=0\)
\(\Leftrightarrow t^2-64-297=0\)
\(\Leftrightarrow t^2=361\)
\(\Leftrightarrow t=\pm19\)
có t rồi tìm x thôi
Cho bạn kết quả phân tích thôi, tự phân tích nha:D
a) \(\Leftrightarrow2\left(x+4\right)\left(x+10\right)\left(x^2+14x+64\right)=0\)
b)\(\Leftrightarrow2\left(x-3\right)\left(x-4\right)\left(x^2-7x+26\right)=0\)
Dạng này thì em : \(\frac{6+8}{2}=7\).
Đặt x + 7 =t
=> Phương trình ban đầu trở thành: \(\left(t+1\right)^4+\left(t-1\right)^4=272\)
<=> \(\left(t^4+4t^3+6t^2+4t+1\right)+\left(t^4-4t^3+6t^2-4t+1\right)=272\)
<=> \(2t^4+12t^2+2=272\)
<=> \(t^4+6t^2-135=0\)
<=> \(t^4+6t^2+9=144\)
<=> \(\left(t^2+3\right)^2=12^2\)
<=> \(\orbr{\begin{cases}t^2+3=12\\t^2+3=-12\end{cases}}\Leftrightarrow\orbr{\begin{cases}t^2=9\left(tm\right)\\t^2=-15\left(l\right)\end{cases}}\Leftrightarrow t=\pm3\)
Với t = 3 có: x + 7 = 3 <=> x =-4
Với t = -3 có: x +7 =-3 <=> x = -10
b) pt \(\left(5-x\right)^4+\left(2-x\right)^4=17\)<=> \(\left(x-5\right)^4+\left(x-2\right)^4=17\)
Tương tự: \(\frac{5+2}{2}=\frac{7}{2}\)
Đặt: \(x-\frac{7}{2}=t\)
pt trở thành: \(\left(t-\frac{3}{2}\right)^4+\left(t+\frac{3}{2}\right)^4=17\)
<=> ....
Làm thử tiếp nha.
Chú ý công thức : \(\left(a\pm b\right)^4=a^4\pm4a^3b+6a^2b^2\pm4ab^3+b^4\)
a/ Đặt (x^2 - 5x) = a thì ta có
a^2 + 10a + 24 = 0
<=> (a + 4)(a + 6) = 0
Làm nốt
b/ (x - 4)(x - 5)(x - 6)(x - 7) = 1680
<=> (x - 4)(x - 7)(x - 5)(x - 6) = 1680
<=> (x^2 - 11x + 28)(x^2 - 11x + 30) = 1680
Đặt x^2 - 11x + 28 = a thì ta có
a(a + 2) = 1680
<=> (a - 40)(a + 42) = 0
Làm nốt
x={2;4}
Câu này cách làm tương tự câu mũ 4 ở trên nhé, đặt ẩn phụ và biến đổi như vậy