Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(16x^4+1\ge8x^2\) ; \(y^4+1\ge2y^2\)
\(\Rightarrow\left(16x^4+1\right)\left(y^4+1\right)\ge8x^2.2y^2=16x^2y^2\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}16x^4=1\\y^4=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\pm\frac{1}{2}\\y=\pm1\end{matrix}\right.\)
a: \(\Leftrightarrow3x^2+x>3\left(x^2-4\right)\)
=>x>-12
b: \(\Leftrightarrow5x^2-x+20x-4>5x^2+16x+2\)
=>19x-4>16x+2
=>3x>6
hay x>2
a/\(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=18\)
\(\Leftrightarrow4x^4+16x^3+23x^2+14x-15=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+5\right)\left(x^2+2x+3\right)=0\)
Tới đây thì đơn giản rồi b tự làm nhé
b/ \(3x^4-13x^3+16x^2-13x+3=0\)
\(\Leftrightarrow\left(x-3\right)\left(3x-1\right)\left(x^2-x+1\right)=0\)
Tới đây thì bạn làm tiếp nhé
c/ \(\left(x+3\right)^4+\left(x+5\right)^4=16\)
\(\Leftrightarrow2x^4+32x^3+204x^2+608x+690=0\)
\(\Leftrightarrow\left(x+3\right)\left(x+5\right)\left(x^2+8x+23\right)=0\)
Bạn làm tiếp nhé
\(a,\left(3x+\frac{5}{2}y\right)^2=6x^2+15xy+6,25\)
\(b,\left(x^2-\frac{3}{2}\right)^2=x^2-3x+2,25\)
\(c,\frac{1}{4}-16x^2y^2=\frac{1}{2}^2-2x^2y^2=\left(\frac{1}{2}-2x^2y^2\right)\left(\frac{1}{2}+2x^2y^2\right)\)
\(d,\left(\frac{1}{5}x-2y\right)\left(2y+\frac{1}{5}x\right)=\left(\frac{1}{5}x-2y\right)\left(\frac{1}{5}x+2y\right)=......\)
bạn tự làm tiếp nha
nếu sai thì cho mk xl nha
a) \(\left(x^2-3x+1\right)\left(x^2+5x+1\right)=2x^2\)
\(\Rightarrow\)Cậu xem lại đề xem có sai chỗ nào không nhé !
b) \(x^4-9x\left(x^2-2\right)+16x^2+4=0\)
\(\Leftrightarrow x^4-9x^3+18x+16x^2+4=0\)
\(\Leftrightarrow x^4-4x^3-2x^2-5x^3+20x^2+10x-2x^2+8x+4=0\)
\(\Leftrightarrow x^2\left(x^2-4x-2\right)-5x\left(x^2-4x-2\right)-2\left(x^2-4x-2\right)=0\)
\(\Leftrightarrow\left(x^2-4x-2\right)\left(x^2-5x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-4x-2=0\\x^2-5x-2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\pm\sqrt{6}\\x=\frac{5\pm\sqrt{33}}{2}\end{cases}}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{2\pm\sqrt{6};\frac{5+\sqrt{33}}{2}\right\}\)
b) \(ĐKXĐ:x\ne1;x\ne\frac{2}{3}\)
\(\frac{2x}{3x^2-5x+2}+\frac{13x}{3x^2+x+2}=0\)
\(\Leftrightarrow\frac{2x\left(3x^2+x+2\right)+13x\left(3x^2-5x+2\right)}{\left(3x^2-5x+2\right)\left(3x^2+x+2\right)}=0\)
\(\Leftrightarrow\frac{6x^3+2x^2+4x+39x^3-65x^2+26x}{\left(3x^2-5x+2\right)\left(3x^2+x+2\right)}=0\)
\(\Leftrightarrow45x^3-63x^2+30x=0\)
\(\Leftrightarrow3x\left(15x^2-21x+10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\15x^2-21x+10=0\left(ktm\right)\end{cases}}\)
Vậy x = 0 là nghiệm của phương trình.
23: \(=\left(2a-b\right)^2-\left(2a-2b\right)^2\)
\(=\left(2a-b-2a+2b\right)\left(2a-b+2a-2b\right)\)
\(=b\left(4a-3b\right)\)
24: \(=\left(3a+3b\right)^2-\left(2a-4b\right)^2\)
\(=\left(3a+3b-2a+4b\right)\left(3a+3b+2a-4b\right)\)
\(=\left(a+7b\right)\left(5a-b\right)\)
25: \(=\left(4a-2b\right)^2-\left(4a-4b\right)^2\)
\(=\left(4a-2b-4a+4b\right)\left(4a-2b+4a-4b\right)\)
\(=2b\left(8a-6b\right)\)
=4b(4a-3b)