\(\frac{x+6}{x-5}+\frac{x-5}{x+6}=\frac{2x^2+23x+61}{x^2+x-30}\)

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2021

ĐKXĐ : \(x\ne5;x\ne-6\)

Ta có phương trình \(\frac{x+6}{x-5}+\frac{x-5}{x+6}=\frac{2x^2+23x+61}{x^2+x-30}\)

=> \(\frac{\left(x+6\right)^2+\left(x-5\right)^2}{\left(x-5\right)\left(x+6\right)}=\frac{2x^2+23x+61}{\left(x-5\right)\left(x+6\right)}\)

<=> \(\frac{x^2+12x+36+x^2-10x+25}{\left(x-5\right)\left(x+6\right)}=\frac{2x^2+23x+61}{\left(x-5\right)\left(x+6\right)}\)

=> \(\frac{2x^2+2x+61}{\left(x-5\right)\left(x+6\right)}=\frac{2x^2+23x+61}{\left(x-5\right)\left(x+6\right)}\)

=> 2x2 + 2x + 61 = 2x2 + 23x + 61

<=> 21x = 0

<=> x = 0 (tm)

Vậy x = 0 là nghiệm phương trình

7 tháng 3 2021

\(\frac{x+6}{x-5}+\frac{x-5}{x+6}=\frac{2x^2+23x+61}{x^2+x-30}\)ĐK : \(x\ne5;-6\)

\(\Leftrightarrow\frac{\left(x+6\right)^2+\left(x-5\right)^2}{\left(x-5\right)\left(x+6\right)}=\frac{2x^2+23x+61}{\left(x-5\right)\left(x+6\right)}\)

\(\Rightarrow x^2+12x+36+x^2-10x+25=2x^2+23x+61\)

\(\Leftrightarrow2x^2+2x+61=2x^2+23x+61\Leftrightarrow2x-23x=0\)

\(\Leftrightarrow-21x=0\Leftrightarrow x=0\)( tmđk )

Vậy tập nghiệm của phương trình là S= { 0 }

26 tháng 11 2015

sorry, em mới học lớp 6 thui

26 tháng 11 2015

mình cũng giải câu này rồi nhưng  ko biết đúng ko

2)x+6/x-5 + x-5/x+6 = 2x2+23x+61/x2+x-30

dkxd:x khắc 5;x khác-6

mc:(x-5)(x+6)

2x2+2x+61 =2x2+23x+61

2x=23x

2x=0 suy ra x=0

23x=0 suyra x=0 

s={0}

3)6/x-5 + x+2/x-8 = 18/9(x-5)(8-x) - 1

dkxd: x khác 5 ; x khác -8

mc(x-5)(x-8) 

3x+x2-58 =36x-x2+264

3x-58=36x+264  

3x-58=0 suy ra x=58/3

36x+264=0 suy ra x=-22/8

s={58/3;-22/3}

 

 

 

\(\frac{x^2+5}{25-x^2}=\frac{3}{x+5}+\frac{x}{x-5}\)

\(\Leftrightarrow\frac{x^2+5}{\left(5-x\right)\left(5+x\right)}=\frac{3}{5+x}-\frac{x}{5-x}\)

\(\Leftrightarrow\frac{x^2+5}{\left(5-x\right)\left(5+x\right)}=\frac{3\left(5-x\right)-x\left(5+x\right)}{\left(5-x\right)\left(5+x\right)}\)

\(\Rightarrow x^2+5=3\left(5-x\right)-x\left(5+x\right)\)

\(\Leftrightarrow x^2+5=15-3x-5x-x^2\)

\(\Leftrightarrow15-3x-5x-x^2-x^2-5=0\)

\(\Leftrightarrow10-8x-2x^2=0\)

\(\Leftrightarrow2x^2+8x-10=0\)

\(\Leftrightarrow2\left(x^2+4x-5\right)=0\)

\(\Leftrightarrow2\left(x^2+5x-x-5\right)=0\)

\(\Leftrightarrow x^2-x+5x-5=0\)

\(\Leftrightarrow x\left(x-1\right)+5\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}}\)

26 tháng 3 2020

giúp mik vs

26 tháng 3 2020

a) \(\frac{3-2x}{5}>\frac{2-x}{3}\)

<=> \(\frac{3\left(3-2x\right)}{15}>\frac{5\left(2-x\right)}{15}\)

<=> \(9-6x>10-5x\)

<=> 9 - 10 > -5x + 6x

<=> x < -1

Vậy nghiệm của bất phương trình là x < -1

b) \(\frac{x-1}{6}-\frac{x-1}{3}\le\frac{x}{2}\)

<=> \(\frac{x-1-2\left(x-1\right)}{6}\le\frac{3x}{6}\)

<=> \(x-1-2x+2\le3x\)

<=> \(-x+1\le3x\)

<=> \(1\le2x\)

<=> x \(\ge\frac{1}{2}\)

Vậy nghiệm của bất phương trình là x > = 1/2

c) \(\frac{x+1}{3}>\frac{2x-1}{6}-2\)

<=> \(\frac{2\left(x+1\right)}{6}>\frac{2x-1-12}{6}\)

<=> 2x + 1 > 2x - 13

<=> 1 > -13 (luôn đúng)

Vậy nghiệm của bất phương trình luôn đúng với mọi x 

18 tháng 8 2020

1. \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)

\(\Leftrightarrow5\left(7x-1\right)+60x=6\left(16-x\right)\)

\(\Leftrightarrow35x-5+60x=96-6x\)

\(\Leftrightarrow95x-5=96-6x\)

\(\Leftrightarrow95x+6x=96+5\)

\(\Leftrightarrow101x=101\)

\(\Leftrightarrow x=1\)

2. \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\) 

\(\Leftrightarrow3\left(10x+3\right)=36+4\left(6+8x\right)\)

\(\Leftrightarrow30x+9=36+24+32x\)

\(\Leftrightarrow30x+9=32x+60\)

\(\Leftrightarrow30x-32x=60-9\)

\(\Leftrightarrow-2x=51\)

\(\Leftrightarrow x=-\frac{51}{2}\)

3. \(\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{2}+\frac{x+3}{4}\)

\(\Leftrightarrow8x-3-2\left(3x-2\right)=2\left(2x-1\right)+x+3\)

\(\Leftrightarrow8x-3-6x+4=4x-2+x+3\)

\(\Leftrightarrow2x+1=5x+1\)

\(\Leftrightarrow2x=5x\)

\(\Leftrightarrow x=0\)

19 tháng 8 2020

4) \(\frac{3\left(3-x\right)}{8}+\frac{2\left(5-x\right)}{3}=\frac{1-x}{2}-2\)

=> \(\frac{9-3x}{8}+\frac{10-2x}{3}=\frac{1-x}{2}-\frac{2}{1}\)

=> \(\frac{3\left(9-3x\right)}{24}+\frac{8\left(10-2x\right)}{24}=\frac{12\left(1-x\right)}{24}-\frac{48}{24}\)

=> \(\frac{27-9x}{24}+\frac{80-16x}{24}=\frac{12-12x}{24}-\frac{48}{24}\)

=> \(\frac{27-9x+80-16x}{24}=\frac{12-12x-48}{24}\)

=> 27 - 9x + 80 - 16x = 12 - 12x - 48

=> 27 - 9x + 80 - 16x - 12 + 12x + 48 = 0

=> (27 + 80 - 12 + 48) + (-9x - 16x + 12x) = 0

=> 143 - 13x = 0

=> 13x = 143

=> x = 11

5) \(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)

=> \(\frac{2x-6}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)

=> \(\frac{3\left(2x-6\right)}{21}+\frac{7\left(x-5\right)}{21}-\frac{13x+4}{21}=0\)

=> \(\frac{6x-18}{21}+\frac{7x-35}{21}-\frac{13x+4}{21}=0\)

=> \(\frac{6x-18+7x-35-13x-4}{21}=0\)

=> 6x - 18 + 7x - 35 - 13x - 4 = 0

=> (6x + 7x - 13x) + (-18 - 35 - 4) = 0

=> -57 = 0(vô nghiệm)

6) \(\frac{6x+5}{2}-\left(2x+\frac{2x+1}{2}\right)=\frac{10x+3}{4}\)

=> \(\frac{6x+5}{2}-\frac{10x+3}{4}=2x+\frac{2x+1}{2}\)

=> \(\frac{2\left(6x+5\right)}{4}-\frac{10x+3}{4}=\frac{8x}{4}+\frac{2\left(2x+1\right)}{4}\)

=> \(\frac{12x+10}{4}-\frac{10x+3}{4}=\frac{8x}{4}+\frac{4x+2}{4}\)

=> \(\frac{12x+10-\left(10x+3\right)}{4}=\frac{8x+4x+2}{4}\)

=> \(\frac{12x+10-10x-3}{4}=\frac{12x+2}{4}\)

=> \(12x+10-10x-3=12x+2\)

=> \(2x+10-3=12x+2\)

=> 2x + 10 - 3 - 12x - 2 = 0

=> (2x - 12x) + (10 - 3 - 2) = 0

=> -10x + 5 = 0

=> -10x = -5

=> x = 1/2

7) \(\frac{2x-1}{5}-\frac{x-2}{3}-\frac{x+7}{15}=0\)

=> \(\frac{3\left(2x-1\right)}{15}-\frac{5\left(x-2\right)}{15}-\frac{x+7}{15}=0\)

=> \(\frac{6x-3}{15}-\frac{5x-10}{15}-\frac{x+7}{15}=0\)

=> \(\frac{6x-3-\left(5x-10\right)-\left(x+7\right)}{15}=0\)

=> 6x - 3 - 5x + 10 - x - 7 = 0

=> (6x - 5x - x) + (-3 + 10 - 7) = 0

=> 0x + 0 = 0

=> 0x = 0

=> x tùy ý

Bài 8 tự làm nhé

20 tháng 7 2019

\(\text{a) }\frac{6}{x-4}-\frac{x}{x+2}=\frac{6}{x-4}.\frac{x}{x+2}\)

\(ĐKXĐ:x\ne-2;x\ne4\)

\(MTC:\left(x-4\right)\left(x+2\right)\)

\(\Leftrightarrow\frac{6\left(x+2\right)}{\left(x-4\right)\left(x+2\right)}-\frac{x\left(x-4\right)}{\left(x-4\right)\left(x+2\right)}=\frac{6x}{\left(x-4\right)\left(x+2\right)}\)

\(\Rightarrow6\left(x+2\right)-x\left(x-4\right)=6x\)

\(\Leftrightarrow6x+12-x^2+4x=6x\)

\(\Leftrightarrow6x+12-x^2+4x-6x=0\)

\(\Leftrightarrow-x^2+4x+12=0\)

\(\Leftrightarrow-\left(x^2-4x-12\right)=0\)

\(\Leftrightarrow x^2-4x-12=0\)

\(\Leftrightarrow x^2+2x-6x-12=0\)

\(\Leftrightarrow x\left(x+2\right)-6\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-6\right)=0\)

\(\Leftrightarrow x=-2\left(\text{loại}\right)\text{ hoặc }x=6\left(\text{nhận}\right)\)

Vậy \(S=\left\{6\right\}\)

\(\text{b) }\frac{2x+3}{2x-1}=\frac{x-3}{x+5}\)

\(ĐKXĐ:x\ne\frac{1}{2};x\ne-5\)

\(\Leftrightarrow\left(2x+3\right)\left(x+5\right)=\left(2x-1\right)\left(x-3\right)\left[\text{Tỉ lệ thức}\right]\)

\(\Leftrightarrow2x^2+10x+3x+15=2x^2-6x-x+3\)

\(\Leftrightarrow2x^2+13x+15=2x^2-7x+3\)

\(\Leftrightarrow2x^2+13x-2x^2+7x=3-15\)

\(\Leftrightarrow20x=-12\)

\(\Leftrightarrow x=\frac{-12}{20}=\frac{-3}{5}\)

Vậy \(S=\left\{\frac{-3}{5}\right\}\)

11 tháng 6 2017

1)

a) \(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}< =>\frac{2\left(x+5\right)}{2\left(3x-6\right)}-\frac{3x-6}{2\left(3x-6\right)}=\frac{3\left(2x-3\right)}{3\left(2x-4\right)}.\)

(đk:x khác \(\frac{1}{2}\))

\(\frac{2x+10}{6x-12}-\frac{3x-6}{6x-12}=\frac{6x-9}{6x-12}< =>2x+10-3x+6=6x-9< =>x=\frac{25}{7}\)

Vậy x=\(\frac{25}{7}\)

b) /7-2x/=x-3 \(x\ge\frac{7}{2}\)

(đk \(x\ge3,\frac{7}{2}< =>x\ge\frac{7}{2}\))

\(\Rightarrow\orbr{\begin{cases}7-2x=x-3\\7-2x=-\left(x-3\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{10}{3}\left(< \frac{7}{2}\Rightarrow l\right)\\x=4\left(tm\right)\end{cases}}}\)

Vậy x=4

2)

\(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}>\frac{x-4}{5}+\frac{x-5}{6}\)

\(\Leftrightarrow\frac{30\left(x-1\right)}{60}+\frac{20\left(x-2\right)}{60}+\frac{15\left(x-3\right)}{60}-\frac{12\left(x-4\right)}{60}-\frac{10\left(x-5\right)}{60}>0\)

\(\Leftrightarrow30x-30+20x-40+15x-45-12x+48-10x+50>0\Leftrightarrow43x-17>0\Leftrightarrow x>\frac{17}{43}\)

3 tháng 1 2021

a) 3x - 2(5 + 2x) =45 - 2x

=> 3x - 10 - 4x = 45 - 2x

=> 3x - 4x + 2x = 45 + 10

=> x = 55

b) \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)

=> \(\frac{x-3}{5}=\frac{2x+17}{3}\)

=> 5(2x + 17) = 3(x - 3)

=> 10x + 85 = 3x - 9

=> 7x = -94

=> x = -94/7

c) \(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x+1\right)}{7}-5\)

=> \(\frac{5x-3}{6}-\frac{7x-1}{4}=\frac{4x-33}{7}\)

=> \(\frac{10x-6}{12}-\frac{21x-3}{12}=\frac{4x-33}{7}\)

=> \(\frac{-11x-3}{12}=\frac{4x-33}{7}\)

=> (-11x - 3).7 = (4x - 33).12

= -77x - 21 = 48x - 396

=> x = 3

d) (x - 1)(5x + 3) = (3x - 8)(x - 1)

=> (x - 1)(5x + 3) - (3x - 8)(x -1) = 0

=> (x - 1)(2x + 11) = 0

=> \(\orbr{\begin{cases}x-1=0\\2x+11=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-5,5\end{cases}}\) 

e) (x - 1)(x2 + 5x - 2) - (x3 - 1) = 0

=> (x - 1)(x2 + 5x - 2) - (x - 1)(x2 + x + 1) = 0

=> (x - 1)(4x - 3) = 0

=> \(\orbr{\begin{cases}x-1=0\\4x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=0,75\end{cases}}\)

f) \(\frac{x-17}{33}+\frac{x-21}{29}+\frac{x}{25}=4\) 

=> \(\left(\frac{x-17}{33}-1\right)+\left(\frac{x-21}{29}-1\right)+\left(\frac{x}{25}-2\right)=0\)

=> \(\frac{x-50}{33}+\frac{x-50}{29}+\frac{x-50}{25}=0\)

=> \(\left(x-50\right)\left(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}\right)=0\)

=> x - 50 = 0 (Vì \(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}\ne0\))

=> x = 50

3 tháng 1 2021

b, \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)

\(\Leftrightarrow\frac{x-3}{5}=\frac{17+2x}{3}\Leftrightarrow3x-9=85+10x\)

\(\Leftrightarrow-7x=94\Leftrightarrow x=-\frac{94}{7}\)

f, sửa : \(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)

\(\Leftrightarrow\frac{x+1}{65}+1+\frac{x+3}{63}+1=\frac{x+5}{61}+1+\frac{x+7}{59}+1\)

\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}=\frac{x+66}{61}+\frac{x+66}{59}\)

\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}-\frac{x+66}{61}-\frac{x+66}{59}=0\)

\(\Leftrightarrow\left(x+66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\ne0\right)=0\)

\(\Leftrightarrow x=-66\)

21 tháng 7 2016

a)2x-5/x+5=3=>2x-5=3(x+5)=3x+15

=>2x=3x+20=>x=-20

b)(x^2-6)/x=x+3/2

=>(x^2-6)/x - x=3/2

=>-6/x[quy đồng]=3/2

=>x=-4

c)Để (x^2+2x)(3x+6)/x3=0

thì  (x^2+2x)(3x+6)=0

=x(x+2)-3(x+2)=(x-3)(x+2)=0

=>x=3 hoặc x=-2

Mà ở mẫu có x-3 nếu x=3 thì mẫu =0=>loại

Vậy x=2

d)5/3x+2=2x1

=>5=(3x+2)(2x-1)

Tìm ước của 5 rùi thay vào 3x+2 và 2x-1 rùi tìm x,cái đó dễ nên bn tự lm nhé

e)

(2x1/x1)+1=1/x1

=>1/x-1-2x-1/x-1=1

=>-2x/x-1=1

=>-2x=x-1

=>x=1/3

g)(x+3/x+1)+(x2/x)=2

=>quy đồng rùi tính và tìm x nhé bn,mk mỏi tay rùi

nhớ tick cho mk nha,mk siêng lắm ms ghi cho bn nhiều thế này nè,nhớ tick nha,thanks

21 tháng 7 2016

a)  \(\frac{2x-5}{x+5}=3\)

  \(\Leftrightarrow2x-5=3\left(x+5\right)\)

  \(\Leftrightarrow2x-5=3x+15\)

  \(\Leftrightarrow2x-3x=15+5\)

  \(\Leftrightarrow-x=20\\ \)

   \(\Leftrightarrow x=-20\)

b) \(\frac{x^2-6}{x}=x+\frac{3}{2}\)

  \(\Leftrightarrow\frac{x^2-6}{x}=\frac{2x+3}{2}\)

  \(\Leftrightarrow2\left(x^2-6\right)=x\left(2x+3\right)\)

  \(\Leftrightarrow2x^2-12=2x^2+3x\)

  \(\Leftrightarrow3x=-12\)

  \(\Leftrightarrow x=-4\) 

c) \(\frac{\left(x^2+2x\right)-\left(3x+6\right)}{x-3}=0\)

  \(\Leftrightarrow\frac{x\left(x+2\right)-3\left(x+2\right)}{x-3}=0\)

  \(\Leftrightarrow\frac{\left(x+2\right)\left(x-3\right)}{x-3}=0\)

  \(\Leftrightarrow x+2=0\)

  \(\Leftrightarrow x=-2\)

d)  \(\frac{5}{3x+2}=2x-1\)

 \(\Leftrightarrow5=\left(2x-1\right)\left(3x+2\right)\)

 \(\Leftrightarrow5=6x^2+x-2\)

 \(\Leftrightarrow6x^2+x-7=0\)

 \(\Leftrightarrow\left[\begin{array}{nghiempt}1\\\frac{-7}{6}\end{array}\right.\)

e)  \(\frac{2x-1}{x-1}+1=\frac{1}{x-1}\)

   \(\Leftrightarrow2x-1+x-1=1\)

   \(\Leftrightarrow3x=3\)

   \(\Leftrightarrow x=1\)

g) \(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)

  \(\Leftrightarrow\frac{x\left(x+3\right)}{x\left(x+1\right)}+\frac{\left(x-2\right)\left(x+1\right)}{x\left(x+1\right)}=\frac{2x\left(x+1\right)}{x\left(x+1\right)}\)

  \(\Leftrightarrow x\left(x+3\right)+\left(x-2\right)\left(x+1\right)=2x\left(x+1\right)\)

  \(\Leftrightarrow x^2+3x+x^2-x-2=2x^2+2x\)

  \(\Leftrightarrow2x-2x-2=0\)

  \(\Leftrightarrow-2=0\)    \(\Rightarrow\)Phương trình vô nghiệm