Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

mình cũng giải câu này rồi nhưng ko biết đúng ko
2)x+6/x-5 + x-5/x+6 = 2x2+23x+61/x2+x-30
dkxd:x khắc 5;x khác-6
mc:(x-5)(x+6)
2x2+2x+61 =2x2+23x+61
2x=23x
2x=0 suy ra x=0
23x=0 suyra x=0
s={0}
3)6/x-5 + x+2/x-8 = 18/9(x-5)(8-x) - 1
dkxd: x khác 5 ; x khác -8
mc(x-5)(x-8)
3x+x2-58 =36x-x2+264
3x-58=36x+264
3x-58=0 suy ra x=58/3
36x+264=0 suy ra x=-22/8
s={58/3;-22/3}

\(\frac{x^2+5}{25-x^2}=\frac{3}{x+5}+\frac{x}{x-5}\)
\(\Leftrightarrow\frac{x^2+5}{\left(5-x\right)\left(5+x\right)}=\frac{3}{5+x}-\frac{x}{5-x}\)
\(\Leftrightarrow\frac{x^2+5}{\left(5-x\right)\left(5+x\right)}=\frac{3\left(5-x\right)-x\left(5+x\right)}{\left(5-x\right)\left(5+x\right)}\)
\(\Rightarrow x^2+5=3\left(5-x\right)-x\left(5+x\right)\)
\(\Leftrightarrow x^2+5=15-3x-5x-x^2\)
\(\Leftrightarrow15-3x-5x-x^2-x^2-5=0\)
\(\Leftrightarrow10-8x-2x^2=0\)
\(\Leftrightarrow2x^2+8x-10=0\)
\(\Leftrightarrow2\left(x^2+4x-5\right)=0\)
\(\Leftrightarrow2\left(x^2+5x-x-5\right)=0\)
\(\Leftrightarrow x^2-x+5x-5=0\)
\(\Leftrightarrow x\left(x-1\right)+5\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}}\)

a) \(\frac{3-2x}{5}>\frac{2-x}{3}\)
<=> \(\frac{3\left(3-2x\right)}{15}>\frac{5\left(2-x\right)}{15}\)
<=> \(9-6x>10-5x\)
<=> 9 - 10 > -5x + 6x
<=> x < -1
Vậy nghiệm của bất phương trình là x < -1
b) \(\frac{x-1}{6}-\frac{x-1}{3}\le\frac{x}{2}\)
<=> \(\frac{x-1-2\left(x-1\right)}{6}\le\frac{3x}{6}\)
<=> \(x-1-2x+2\le3x\)
<=> \(-x+1\le3x\)
<=> \(1\le2x\)
<=> x \(\ge\frac{1}{2}\)
Vậy nghiệm của bất phương trình là x > = 1/2
c) \(\frac{x+1}{3}>\frac{2x-1}{6}-2\)
<=> \(\frac{2\left(x+1\right)}{6}>\frac{2x-1-12}{6}\)
<=> 2x + 1 > 2x - 13
<=> 1 > -13 (luôn đúng)
Vậy nghiệm của bất phương trình luôn đúng với mọi x

1. \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)
\(\Leftrightarrow5\left(7x-1\right)+60x=6\left(16-x\right)\)
\(\Leftrightarrow35x-5+60x=96-6x\)
\(\Leftrightarrow95x-5=96-6x\)
\(\Leftrightarrow95x+6x=96+5\)
\(\Leftrightarrow101x=101\)
\(\Leftrightarrow x=1\)
2. \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)
\(\Leftrightarrow3\left(10x+3\right)=36+4\left(6+8x\right)\)
\(\Leftrightarrow30x+9=36+24+32x\)
\(\Leftrightarrow30x+9=32x+60\)
\(\Leftrightarrow30x-32x=60-9\)
\(\Leftrightarrow-2x=51\)
\(\Leftrightarrow x=-\frac{51}{2}\)
3. \(\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{2}+\frac{x+3}{4}\)
\(\Leftrightarrow8x-3-2\left(3x-2\right)=2\left(2x-1\right)+x+3\)
\(\Leftrightarrow8x-3-6x+4=4x-2+x+3\)
\(\Leftrightarrow2x+1=5x+1\)
\(\Leftrightarrow2x=5x\)
\(\Leftrightarrow x=0\)
4) \(\frac{3\left(3-x\right)}{8}+\frac{2\left(5-x\right)}{3}=\frac{1-x}{2}-2\)
=> \(\frac{9-3x}{8}+\frac{10-2x}{3}=\frac{1-x}{2}-\frac{2}{1}\)
=> \(\frac{3\left(9-3x\right)}{24}+\frac{8\left(10-2x\right)}{24}=\frac{12\left(1-x\right)}{24}-\frac{48}{24}\)
=> \(\frac{27-9x}{24}+\frac{80-16x}{24}=\frac{12-12x}{24}-\frac{48}{24}\)
=> \(\frac{27-9x+80-16x}{24}=\frac{12-12x-48}{24}\)
=> 27 - 9x + 80 - 16x = 12 - 12x - 48
=> 27 - 9x + 80 - 16x - 12 + 12x + 48 = 0
=> (27 + 80 - 12 + 48) + (-9x - 16x + 12x) = 0
=> 143 - 13x = 0
=> 13x = 143
=> x = 11
5) \(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)
=> \(\frac{2x-6}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)
=> \(\frac{3\left(2x-6\right)}{21}+\frac{7\left(x-5\right)}{21}-\frac{13x+4}{21}=0\)
=> \(\frac{6x-18}{21}+\frac{7x-35}{21}-\frac{13x+4}{21}=0\)
=> \(\frac{6x-18+7x-35-13x-4}{21}=0\)
=> 6x - 18 + 7x - 35 - 13x - 4 = 0
=> (6x + 7x - 13x) + (-18 - 35 - 4) = 0
=> -57 = 0(vô nghiệm)
6) \(\frac{6x+5}{2}-\left(2x+\frac{2x+1}{2}\right)=\frac{10x+3}{4}\)
=> \(\frac{6x+5}{2}-\frac{10x+3}{4}=2x+\frac{2x+1}{2}\)
=> \(\frac{2\left(6x+5\right)}{4}-\frac{10x+3}{4}=\frac{8x}{4}+\frac{2\left(2x+1\right)}{4}\)
=> \(\frac{12x+10}{4}-\frac{10x+3}{4}=\frac{8x}{4}+\frac{4x+2}{4}\)
=> \(\frac{12x+10-\left(10x+3\right)}{4}=\frac{8x+4x+2}{4}\)
=> \(\frac{12x+10-10x-3}{4}=\frac{12x+2}{4}\)
=> \(12x+10-10x-3=12x+2\)
=> \(2x+10-3=12x+2\)
=> 2x + 10 - 3 - 12x - 2 = 0
=> (2x - 12x) + (10 - 3 - 2) = 0
=> -10x + 5 = 0
=> -10x = -5
=> x = 1/2
7) \(\frac{2x-1}{5}-\frac{x-2}{3}-\frac{x+7}{15}=0\)
=> \(\frac{3\left(2x-1\right)}{15}-\frac{5\left(x-2\right)}{15}-\frac{x+7}{15}=0\)
=> \(\frac{6x-3}{15}-\frac{5x-10}{15}-\frac{x+7}{15}=0\)
=> \(\frac{6x-3-\left(5x-10\right)-\left(x+7\right)}{15}=0\)
=> 6x - 3 - 5x + 10 - x - 7 = 0
=> (6x - 5x - x) + (-3 + 10 - 7) = 0
=> 0x + 0 = 0
=> 0x = 0
=> x tùy ý
Bài 8 tự làm nhé

\(\text{a) }\frac{6}{x-4}-\frac{x}{x+2}=\frac{6}{x-4}.\frac{x}{x+2}\)
\(ĐKXĐ:x\ne-2;x\ne4\)
\(MTC:\left(x-4\right)\left(x+2\right)\)
\(\Leftrightarrow\frac{6\left(x+2\right)}{\left(x-4\right)\left(x+2\right)}-\frac{x\left(x-4\right)}{\left(x-4\right)\left(x+2\right)}=\frac{6x}{\left(x-4\right)\left(x+2\right)}\)
\(\Rightarrow6\left(x+2\right)-x\left(x-4\right)=6x\)
\(\Leftrightarrow6x+12-x^2+4x=6x\)
\(\Leftrightarrow6x+12-x^2+4x-6x=0\)
\(\Leftrightarrow-x^2+4x+12=0\)
\(\Leftrightarrow-\left(x^2-4x-12\right)=0\)
\(\Leftrightarrow x^2-4x-12=0\)
\(\Leftrightarrow x^2+2x-6x-12=0\)
\(\Leftrightarrow x\left(x+2\right)-6\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-6\right)=0\)
\(\Leftrightarrow x=-2\left(\text{loại}\right)\text{ hoặc }x=6\left(\text{nhận}\right)\)
Vậy \(S=\left\{6\right\}\)
\(\text{b) }\frac{2x+3}{2x-1}=\frac{x-3}{x+5}\)
\(ĐKXĐ:x\ne\frac{1}{2};x\ne-5\)
\(\Leftrightarrow\left(2x+3\right)\left(x+5\right)=\left(2x-1\right)\left(x-3\right)\left[\text{Tỉ lệ thức}\right]\)
\(\Leftrightarrow2x^2+10x+3x+15=2x^2-6x-x+3\)
\(\Leftrightarrow2x^2+13x+15=2x^2-7x+3\)
\(\Leftrightarrow2x^2+13x-2x^2+7x=3-15\)
\(\Leftrightarrow20x=-12\)
\(\Leftrightarrow x=\frac{-12}{20}=\frac{-3}{5}\)
Vậy \(S=\left\{\frac{-3}{5}\right\}\)

1)
a) \(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}< =>\frac{2\left(x+5\right)}{2\left(3x-6\right)}-\frac{3x-6}{2\left(3x-6\right)}=\frac{3\left(2x-3\right)}{3\left(2x-4\right)}.\)
(đk:x khác \(\frac{1}{2}\))
\(\frac{2x+10}{6x-12}-\frac{3x-6}{6x-12}=\frac{6x-9}{6x-12}< =>2x+10-3x+6=6x-9< =>x=\frac{25}{7}\)
Vậy x=\(\frac{25}{7}\)
b) /7-2x/=x-3 \(x\ge\frac{7}{2}\)
(đk \(x\ge3,\frac{7}{2}< =>x\ge\frac{7}{2}\))
\(\Rightarrow\orbr{\begin{cases}7-2x=x-3\\7-2x=-\left(x-3\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{10}{3}\left(< \frac{7}{2}\Rightarrow l\right)\\x=4\left(tm\right)\end{cases}}}\)
Vậy x=4
2)
\(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}>\frac{x-4}{5}+\frac{x-5}{6}\)
\(\Leftrightarrow\frac{30\left(x-1\right)}{60}+\frac{20\left(x-2\right)}{60}+\frac{15\left(x-3\right)}{60}-\frac{12\left(x-4\right)}{60}-\frac{10\left(x-5\right)}{60}>0\)
\(\Leftrightarrow30x-30+20x-40+15x-45-12x+48-10x+50>0\Leftrightarrow43x-17>0\Leftrightarrow x>\frac{17}{43}\)

a) 3x - 2(5 + 2x) =45 - 2x
=> 3x - 10 - 4x = 45 - 2x
=> 3x - 4x + 2x = 45 + 10
=> x = 55
b) \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)
=> \(\frac{x-3}{5}=\frac{2x+17}{3}\)
=> 5(2x + 17) = 3(x - 3)
=> 10x + 85 = 3x - 9
=> 7x = -94
=> x = -94/7
c) \(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x+1\right)}{7}-5\)
=> \(\frac{5x-3}{6}-\frac{7x-1}{4}=\frac{4x-33}{7}\)
=> \(\frac{10x-6}{12}-\frac{21x-3}{12}=\frac{4x-33}{7}\)
=> \(\frac{-11x-3}{12}=\frac{4x-33}{7}\)
=> (-11x - 3).7 = (4x - 33).12
= -77x - 21 = 48x - 396
=> x = 3
d) (x - 1)(5x + 3) = (3x - 8)(x - 1)
=> (x - 1)(5x + 3) - (3x - 8)(x -1) = 0
=> (x - 1)(2x + 11) = 0
=> \(\orbr{\begin{cases}x-1=0\\2x+11=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-5,5\end{cases}}\)
e) (x - 1)(x2 + 5x - 2) - (x3 - 1) = 0
=> (x - 1)(x2 + 5x - 2) - (x - 1)(x2 + x + 1) = 0
=> (x - 1)(4x - 3) = 0
=> \(\orbr{\begin{cases}x-1=0\\4x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=0,75\end{cases}}\)
f) \(\frac{x-17}{33}+\frac{x-21}{29}+\frac{x}{25}=4\)
=> \(\left(\frac{x-17}{33}-1\right)+\left(\frac{x-21}{29}-1\right)+\left(\frac{x}{25}-2\right)=0\)
=> \(\frac{x-50}{33}+\frac{x-50}{29}+\frac{x-50}{25}=0\)
=> \(\left(x-50\right)\left(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}\right)=0\)
=> x - 50 = 0 (Vì \(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}\ne0\))
=> x = 50

b, \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)
\(\Leftrightarrow\frac{x-3}{5}=\frac{17+2x}{3}\Leftrightarrow3x-9=85+10x\)
\(\Leftrightarrow-7x=94\Leftrightarrow x=-\frac{94}{7}\)
f, sửa : \(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)
\(\Leftrightarrow\frac{x+1}{65}+1+\frac{x+3}{63}+1=\frac{x+5}{61}+1+\frac{x+7}{59}+1\)
\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}=\frac{x+66}{61}+\frac{x+66}{59}\)
\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}-\frac{x+66}{61}-\frac{x+66}{59}=0\)
\(\Leftrightarrow\left(x+66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\ne0\right)=0\)
\(\Leftrightarrow x=-66\)

a)2x-5/x+5=3=>2x-5=3(x+5)=3x+15
=>2x=3x+20=>x=-20
b)(x^2-6)/x=x+3/2
=>(x^2-6)/x - x=3/2
=>-6/x[quy đồng]=3/2
=>x=-4
c)Để (x^2+2x)−(3x+6)/x−3=0
thì (x^2+2x)−(3x+6)=0
=x(x+2)-3(x+2)=(x-3)(x+2)=0
=>x=3 hoặc x=-2
Mà ở mẫu có x-3 nếu x=3 thì mẫu =0=>loại
Vậy x=2
d)5/3x+2=2x−1
=>5=(3x+2)(2x-1)
Tìm ước của 5 rùi thay vào 3x+2 và 2x-1 rùi tìm x,cái đó dễ nên bn tự lm nhé
e)
(2x−1/x−1)+1=1/x−1
=>1/x-1-2x-1/x-1=1
=>-2x/x-1=1
=>-2x=x-1
=>x=1/3
g)(x+3/x+1)+(x−2/x)=2
=>quy đồng rùi tính và tìm x nhé bn,mk mỏi tay rùi
nhớ tick cho mk nha,mk siêng lắm ms ghi cho bn nhiều thế này nè,nhớ tick nha,thanks
a) \(\frac{2x-5}{x+5}=3\)
\(\Leftrightarrow2x-5=3\left(x+5\right)\)
\(\Leftrightarrow2x-5=3x+15\)
\(\Leftrightarrow2x-3x=15+5\)
\(\Leftrightarrow-x=20\\ \)
\(\Leftrightarrow x=-20\)
b) \(\frac{x^2-6}{x}=x+\frac{3}{2}\)
\(\Leftrightarrow\frac{x^2-6}{x}=\frac{2x+3}{2}\)
\(\Leftrightarrow2\left(x^2-6\right)=x\left(2x+3\right)\)
\(\Leftrightarrow2x^2-12=2x^2+3x\)
\(\Leftrightarrow3x=-12\)
\(\Leftrightarrow x=-4\)
c) \(\frac{\left(x^2+2x\right)-\left(3x+6\right)}{x-3}=0\)
\(\Leftrightarrow\frac{x\left(x+2\right)-3\left(x+2\right)}{x-3}=0\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x-3\right)}{x-3}=0\)
\(\Leftrightarrow x+2=0\)
\(\Leftrightarrow x=-2\)
d) \(\frac{5}{3x+2}=2x-1\)
\(\Leftrightarrow5=\left(2x-1\right)\left(3x+2\right)\)
\(\Leftrightarrow5=6x^2+x-2\)
\(\Leftrightarrow6x^2+x-7=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}1\\\frac{-7}{6}\end{array}\right.\)
e) \(\frac{2x-1}{x-1}+1=\frac{1}{x-1}\)
\(\Leftrightarrow2x-1+x-1=1\)
\(\Leftrightarrow3x=3\)
\(\Leftrightarrow x=1\)
g) \(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)
\(\Leftrightarrow\frac{x\left(x+3\right)}{x\left(x+1\right)}+\frac{\left(x-2\right)\left(x+1\right)}{x\left(x+1\right)}=\frac{2x\left(x+1\right)}{x\left(x+1\right)}\)
\(\Leftrightarrow x\left(x+3\right)+\left(x-2\right)\left(x+1\right)=2x\left(x+1\right)\)
\(\Leftrightarrow x^2+3x+x^2-x-2=2x^2+2x\)
\(\Leftrightarrow2x-2x-2=0\)
\(\Leftrightarrow-2=0\) \(\Rightarrow\)Phương trình vô nghiệm
ĐKXĐ : \(x\ne5;x\ne-6\)
Ta có phương trình \(\frac{x+6}{x-5}+\frac{x-5}{x+6}=\frac{2x^2+23x+61}{x^2+x-30}\)
=> \(\frac{\left(x+6\right)^2+\left(x-5\right)^2}{\left(x-5\right)\left(x+6\right)}=\frac{2x^2+23x+61}{\left(x-5\right)\left(x+6\right)}\)
<=> \(\frac{x^2+12x+36+x^2-10x+25}{\left(x-5\right)\left(x+6\right)}=\frac{2x^2+23x+61}{\left(x-5\right)\left(x+6\right)}\)
=> \(\frac{2x^2+2x+61}{\left(x-5\right)\left(x+6\right)}=\frac{2x^2+23x+61}{\left(x-5\right)\left(x+6\right)}\)
=> 2x2 + 2x + 61 = 2x2 + 23x + 61
<=> 21x = 0
<=> x = 0 (tm)
Vậy x = 0 là nghiệm phương trình
\(\frac{x+6}{x-5}+\frac{x-5}{x+6}=\frac{2x^2+23x+61}{x^2+x-30}\)ĐK : \(x\ne5;-6\)
\(\Leftrightarrow\frac{\left(x+6\right)^2+\left(x-5\right)^2}{\left(x-5\right)\left(x+6\right)}=\frac{2x^2+23x+61}{\left(x-5\right)\left(x+6\right)}\)
\(\Rightarrow x^2+12x+36+x^2-10x+25=2x^2+23x+61\)
\(\Leftrightarrow2x^2+2x+61=2x^2+23x+61\Leftrightarrow2x-23x=0\)
\(\Leftrightarrow-21x=0\Leftrightarrow x=0\)( tmđk )
Vậy tập nghiệm của phương trình là S= { 0 }