\(\frac{x^2}{3}+\frac{48}{x^2}=10(\frac{x}{3}-\frac{4}{x})\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 6 2019

ĐKXĐ: ...

Đặt \(\frac{x}{3}-\frac{4}{x}=a\Rightarrow\frac{x^2}{9}+\frac{16}{x^2}-\frac{8}{3}=a^2\Rightarrow\frac{x^2}{9}+\frac{16}{x^2}=a^2+\frac{8}{3}\)

\(\Rightarrow\frac{x^2}{3}+\frac{48}{x^2}=3a^2+8\)

\(3a^2+8=10a\Leftrightarrow3a^2-10a+8=0\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{4}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{x}{3}-\frac{4}{x}=2\\\frac{x}{3}-\frac{4}{x}=\frac{4}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-6x-12=0\\x^2-4x-12=0\end{matrix}\right.\)

NV
29 tháng 6 2019

ĐKXĐ: ...

Đặt \(\frac{10}{x}-\frac{x}{6}=a\Rightarrow a^2=\frac{100}{x^2}+\frac{x^2}{36}-\frac{10}{3}\Rightarrow\frac{100}{x^2}+\frac{x^2}{36}=a^2+\frac{10}{3}\)

\(\Rightarrow\frac{900}{x^2}+\frac{x^2}{4}=9a^2+30\)

Phương trình trở thành:

\(9a^2+30=2+48a\)

\(\Leftrightarrow9a^2-48a+28=0\Rightarrow\left[{}\begin{matrix}a=\frac{14}{3}\\a=\frac{2}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\frac{10}{x}-\frac{x}{6}=\frac{14}{3}\\\frac{10}{x}-\frac{x}{6}=\frac{2}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\frac{x^2}{6}+\frac{14}{3}x-10=0\\\frac{x^2}{6}+\frac{2}{3}x-10=0\end{matrix}\right.\)

NV
29 tháng 6 2019

ĐKXĐ: ...

Đặt \(\frac{x}{3}-\frac{4}{x}=a\Rightarrow a^2=\frac{x^2}{9}+\frac{16}{x^2}-\frac{8}{3}\Rightarrow\frac{x^2}{9}+\frac{16}{x^2}=a^2+\frac{8}{3}\)

\(a^2+\frac{8}{3}=\frac{10}{3}a\Leftrightarrow3a^2-10a+8=0\Rightarrow\left[{}\begin{matrix}a=2\\a=\frac{4}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\frac{x}{3}-\frac{4}{x}=2\\\frac{x}{3}-\frac{4}{x}=\frac{4}{3}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-6x-12=0\\x^2-4x-12=0\end{matrix}\right.\)

19 tháng 5 2020

Giải phương trình:

\(\frac{x+1}{58}+\frac{x+2}{57}=\frac{x+3}{56}+\frac{x+4}{55}\)

\(\Leftrightarrow\left(\frac{x+1}{58}+1\right)+\left(\frac{x+2}{57}+1\right)=\left(\frac{x+3}{56}+1\right)+\left(\frac{x+4}{55}+1\right)\)

\(\Leftrightarrow\frac{x+59}{58}+\frac{x+59}{57}-\frac{x+59}{56}-\frac{x+59}{55}=0\)

\(\Leftrightarrow\left(x+59\right)\left(\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}\right)=0\)

\(\Leftrightarrow x+59=0\) \(\left(\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}\ne0\right)\)

\(\Leftrightarrow x=-59\)

Vậy : \(S=\left\{-59\right\}\)

19 tháng 5 2020

\(\frac{x+1}{58}+\frac{x+2}{57}=\frac{x+3}{56}+\frac{x+4}{55}\)

\(\Leftrightarrow\) \(\frac{x+1}{58}+1+\frac{x+2}{57}+1=\frac{x+3}{56}+1+\frac{x+4}{55}+1\)

\(\Leftrightarrow\) \(\frac{x+59}{58}+\frac{x+59}{57}=\frac{x+59}{56}+\frac{x+59}{55}\)

\(\Leftrightarrow\) \(\frac{x+59}{58}+\frac{x+59}{57}-\frac{x+59}{56}-\frac{x+59}{55}=0\)

\(\Leftrightarrow\) (x + 59)(\(\frac{1}{58}+\frac{1}{57}-\frac{1}{56}-\frac{1}{55}\)) = 0

\(\Leftrightarrow\) x + 59 = 0

\(\Leftrightarrow\) x = -59

Vậy S = {-59}

Chúc bn học tốt!!

NV
30 tháng 6 2019

\(\frac{2}{x^2+1}+\frac{4}{x^2+3}+\frac{6}{x^2+5}=3+\frac{x^2-1}{x^2+6}\)

\(\Leftrightarrow\frac{x^2-1}{x^2+6}+1-\frac{2}{x^2+1}+1-\frac{4}{x^2+3}+1-\frac{6}{x^2+5}=0\)

\(\Leftrightarrow\frac{x^2-1}{x^2+6}+\frac{x^2-1}{x^2+1}+\frac{x^2-1}{x^2+3}+\frac{x^2-1}{x^2+5}=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(\frac{1}{x^2+6}+\frac{1}{x^2+1}+\frac{1}{x^2+3}+\frac{1}{x^2+5}\right)=0\)

\(\Rightarrow x=\pm1\)

8 tháng 3 2020

\(\frac{x+1}{x-2}=\frac{1}{x^2-4}\left(x\ne\pm2\right)\)

\(\Leftrightarrow\frac{x+1}{x-2}-\frac{1}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{x^2+3x+3}{\left(x-2\right)\left(x+1\right)}-\frac{1}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Rightarrow x^2+3x+3-1=0\)

\(\Leftrightarrow x^2+3x+2=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+2\right)=0\)

<=> x+1=0 hoặc x+2=0

<=> x=-1 hoặc x=-2

\(b,\frac{3}{x+1}=\frac{5}{2x+2}\)

\(\frac{3}{x+1}=\frac{5}{2\left(x+1\right)}\)

\(3=\frac{5}{2}\left(vl\right)\)vô nghiệm 

12 tháng 3 2019

Do \(x^2\ge0\Rightarrow x^2+1\ge1\Rightarrow\frac{1}{x^2+1}>0.\)

Tương tự \(\frac{1}{x^2+2};\frac{1}{x^2+3};\frac{1}{x^2}+4>0\)

=> Phương trình vô nghiệm

NV
29 tháng 6 2019

\(x=0\) không phải nghiệm

\(\frac{4}{x+1+\frac{3}{x}}+\frac{5}{x-5+\frac{3}{x}}=-\frac{3}{2}\)

Đặt \(x-5+\frac{3}{x}=a\)

\(\frac{4}{a+6}+\frac{5}{a}=-\frac{3}{2}\)

\(\Leftrightarrow8a+10\left(a+6\right)=-3a\left(a+6\right)\)

\(\Leftrightarrow3a^2+36a+60=0\Rightarrow\left[{}\begin{matrix}a=-2\\a=-10\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-5+\frac{3}{x}=-2\\x-5+\frac{3}{x}=-10\end{matrix}\right.\) \(\Leftrightarrow...\)

AH
Akai Haruma
Giáo viên
24 tháng 7 2020

Bạn xem lại xem có viết nhầm đề bài không thế?

NV
29 tháng 6 2019

ĐKXĐ: ...

Đặt \(x-\frac{1}{x}=a\Rightarrow a^3=x^3-\frac{1}{x^3}-3\left(x-\frac{1}{x}\right)\Rightarrow x^3-\frac{1}{x^3}=a^3+3a\)

Phương trình trở thành:

\(a^3+3a-2a-2=0\Leftrightarrow a^3+a-2=0\)

\(\Leftrightarrow\left(a-1\right)\left(a^2+a+2\right)=0\)

\(\Rightarrow a=1\Rightarrow x-\frac{1}{x}=1\Rightarrow x^2-x-1=0\)