\(\frac{|x+1|}{x}=6\)

~các cậu giúp tớ hộ nhé...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2019

\(\frac{\left|x+1\right|}{x}=6\)

\(\Leftrightarrow\left|x+1\right|=6x\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=6x\\-\left(x+1\right)=6x\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}1=5x\\-1=7x\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=-\frac{1}{7}\end{cases}}\)

Không hiểu phần nào inb hỏi tớ

6 tháng 9 2020

ĐKXĐ:    \(0\le x\le\frac{3}{2}\)

ĐẶT:    \(\hept{\begin{cases}\sqrt{x}=a\\\sqrt{3-2x}=b\end{cases}\Rightarrow}a;b\ge0\)

=>   \(\hept{\begin{cases}x=a^2\\3-2x=b^2\end{cases}}\)

=>    \(2a^2+b^2=3\)

KHI ĐÓ PT BAN ĐẦU SẼ ĐƯỢC:     \(9+3ab=7a+5b\)

<=>     \(6+3+3ab=7a+5b\)     (*)

THAY    \(2a^2+b^2=3\)vào PT (*) TA SẼ ĐƯỢC:   

=>    \(2a^2+b^2+3ab+6=2\left(2a+b\right)+3\left(a+b\right)\)

<=>   \(\left(a+b\right)\left(2a+b\right)+6=2\left(2a+b\right)+3\left(a+b\right)\)

<=>    \(\left(a+b-2\right)\left(2a+b-3\right)=0\)

<=>    \(\orbr{\begin{cases}a+b=2\\2a+b=3\end{cases}}\)

TH1:     \(a+b=2\Rightarrow\sqrt{x}+\sqrt{3-2x}=2\)

=>    \(x+3-2x+2\sqrt{x\left(3-2x\right)}=4\)

<=>  \(2\sqrt{3x-2x^2}=x+1\)

<=>  \(4\left(3x-2x^2\right)=x^2+2x+1\)

<=>  \(12x-8x^2=x^2+2x+1\)

<=>  \(9x^2-10x+1=0\)

<=>  \(\left(x-1\right)\left(9x-1\right)=0\)

<=>   \(\orbr{\begin{cases}x=1\\x=\frac{1}{9}\end{cases}}\)

=> TA THẤY CÁC GIÁ TRỊ x đều TMĐK.

BẠN TỰ XÉT NỐT TRƯỜNG HỢP 2:     \(2a+b=3\Rightarrow2\sqrt{x}+\sqrt{3-2x}=3\)      nha

28 tháng 8 2019

đạt 

\(\hept{\begin{cases}\sqrt{a}=f\\\sqrt{3-2a}=h\end{cases}}\Rightarrow3ab+9=7f+5h\)

23 tháng 8 2019

\(P=\frac{x\sqrt{x}-8}{x+2\sqrt{x}+4}+3\left(1-\sqrt{x}\right).\)

\(=\frac{\sqrt{x^3}-2^3}{x+2\sqrt{x}+4}+3-3\sqrt{x}\)

\(=\frac{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}{x+2\sqrt{x}+4}+3-3\sqrt{x}\)

\(=\sqrt{x}-2+3-3\sqrt{x}=-2\sqrt{x}+1\)

\(Q=\frac{2P}{1-P}=\frac{2\left(-2\sqrt{x}+1\right)}{1-\left(-2\sqrt{x}+1\right)}\)

\(=\frac{-4\sqrt{x}+2}{1+2\sqrt{x}-1}=\frac{-2\sqrt{x}+1}{\sqrt{x}}\)

\(=\frac{-2\sqrt{x}}{\sqrt{x}}+\frac{1}{\sqrt{x}}=-2+\frac{1}{\sqrt{x}}\)

\(Q\in Z\Leftrightarrow-2+\frac{1}{\sqrt{x}}\in Z\Rightarrow\frac{1}{\sqrt{x}}\in Z\)

\(\Rightarrow1\)\(⋮\)\(\sqrt{x}\)\(\Rightarrow\sqrt{x}\inƯ_1\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=1\\\sqrt{x}=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x\in\varnothing\end{cases}}}\)

Vậy \(Q\in Z\Leftrightarrow x=1\)

26 tháng 8 2019

Áp dụng CT căn phức tạp : \(\sqrt{A\pm\sqrt{B}}=\sqrt{\frac{A+\sqrt{A^2-B}}{2}}\pm\sqrt{\frac{A-\sqrt{A^2-B}}{2}}\)

ĐKXĐ : \(-1\le x\le1\)

Áp dụng CT căn phức tạp , ta được : \(\sqrt{1+\sqrt{1-x^2}}=\sqrt{\frac{1+\sqrt{1-1+x^2}}{2}}+\sqrt{\frac{1-\sqrt{1-1+x^2}}{2}}\)

\(=\sqrt{\frac{1+\left|x\right|}{2}}+\sqrt{\frac{1-\left|x\right|}{2}}=\hept{\begin{cases}\frac{1}{\sqrt{2}}\left(\sqrt{1+x}+\sqrt{1-x}\right)\text{ nếu x }\ge0\\\frac{1}{\sqrt{2}}\left(\sqrt{1-x}+\sqrt{1+x}\right)\text{ nếu x }< 0\end{cases}}\)( kết quả như nhau )

\(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left[\left(1+x\right)+\sqrt{1-x^2}+\left(1-x\right)\right]\)

\(=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)\)

\(\Rightarrow M=\frac{1}{\sqrt{2}}.\frac{\left(\sqrt{1+x}+\sqrt{1-x}\right)\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)}{2+\sqrt{1-x^2}}\)

\(=\frac{1}{\sqrt{2}}.\left[\left(1+x\right)-\left(1-x\right)\right]=x\sqrt{2}\)

Thiếu chứng minh điều kiện bằng j bạn ơi

16 tháng 8 2019

ban ghi ro de bai duoc ko ? mik ko hieu de bai

26 tháng 8 2019

Em thì cứ Bunyakovski thôi ạ:( ko chắc..

Theo BĐT Bunyakovski, ta có: \(\left(\sqrt{2x^2}^2+\sqrt{3y^2}^2\right)\left(\sqrt{\frac{1}{2}}^2+\sqrt{\frac{1}{3}}^2\right)\)

\(\ge\left(x+y\right)^2=5^2=25\)

Do đó \(2x^2+3y^2\ge\frac{25}{\sqrt{\frac{1}{2}}^2+\sqrt{\frac{1}{3}}^2}=30\) 

26 tháng 8 2019

Èo, em làm sai chỗ nào vậy???

20 tháng 8 2019

Với x, y khác 0

Ta có: 

\(a^2+b^2=1\Leftrightarrow\left(a^2+b^2\right)^2=1\Leftrightarrow a^4+2a^2b^2+b^4=1\)

Từ bài ra ta suy ra:

\(\frac{a^4}{x}+\frac{b^4}{y}=\frac{a^4+2a^2b^2+b^4}{x+y}\)

<=> \(a^4\left(x+y\right)y+b^4\left(x+y\right)x=a^4xy+2a^2b^2xy+b^4xy\)

<=> \(a^4y^2+b^4x^2-2a^2y.b^2x=0\)

<=> \(\left(a^2y-b^2x\right)^2=0\)

<=> \(a^2y-b^2x=0\)

<=> \(a^2y=b^2x\)

Câu b em xem lại đề nhé: Thử \(a=b=\frac{1}{\sqrt{2}};x=y=1\)vào ko thỏa mãn