Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x-2=8-3x\)
\(\Leftrightarrow\)\(2x+3x=8+2\)
\(\Leftrightarrow\)\(5x=10\)
\(\Leftrightarrow\)\(x=2\)
Vậy...
\(x^2-3x+1=x+x^2\)
\(\Leftrightarrow\)\(x^2-3x-x-x^2=-1\)
\(\Leftrightarrow\)\(-4x=-1\)
\(\Leftrightarrow\)\(x=\frac{1}{4}\)
Vậy...
mấy cái này bấm máy tính là đc òi. giải mất thời gian lắm :))
a) \(\left(2x+1\right)\left(3x-2\right)=\left(2x+1\right)\left(5x-8\right)\)
\(\Leftrightarrow\)\(\left(2x+1\right)\left(3x-2\right)-\left(2x+1\right)\left(5x-8\right)=0\)
\(\Leftrightarrow\)\(\left(2x+1\right)\left(3x-2-5x+8\right)=0\)
\(\Leftrightarrow\)\(\left(2x+1\right)\left(6-2x\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x+1=0\\6-2x=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-0,5\\x=3\end{cases}}\)
Vậy...
b) \(ĐKXĐ:\) \(x\ne-2;\) \(x\ne4\)
\(\frac{3}{x+2}+\frac{2}{x-4}=0\)
\(\Leftrightarrow\)\(\frac{3\left(x-4\right)}{\left(x+2\right)\left(x-4\right)}+\frac{2\left(x+2\right)}{\left(x+2\right)\left(x-4\right)}=0\)
\(\Leftrightarrow\)\(\frac{3x-12+2x+4}{\left(x+2\right)\left(x-4\right)}=0\)
\(\Leftrightarrow\)\(\frac{5x-8}{\left(x+2\right)\left(x-4\right)}=0\)
\(\Rightarrow\)\(5x-8=0\)
\(\Leftrightarrow\)\(x=\frac{8}{5}\) (T/m đkxđ)
Vậy...
c) \(x^3+4x^2+4x+3=0\)
\(\Leftrightarrow\)\(x^3+3x^2+x^2+3x+x+3=0\)
\(\Leftrightarrow\)\(x^2\left(x+3\right)+x\left(x+3\right)+\left(x+3\right)=0\)
\(\Leftrightarrow\)\(\left(x+3\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\)\(x+3=0\) (do \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\) \(\forall x\))
\(\Leftrightarrow\)\(x=-3\)
Vậy...
c) \(\left|2x-3\right|=4\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=4\\2x-3=-4\end{cases}}\)
\(TH:2x-3=4\)
\(\Leftrightarrow2x=4+3\)
\(\Leftrightarrow2x=7\)
\(\Leftrightarrow x=\frac{7}{2}\)
\(TH:2x-3=-4\)
\(\Leftrightarrow2x=-4+3\)
\(\Leftrightarrow2x=-1\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(x\in\left\{\frac{7}{2};\frac{-1}{2}\right\}\)
e) \(\frac{x-1}{x-3}>1\)
\(ĐKXĐ:x\ne3\)
\(\Leftrightarrow\frac{x-3+2}{x-3}>1\)
\(\Leftrightarrow\frac{x-3}{x-3}+\frac{2}{x-3}>1\)
\(\Leftrightarrow1+\frac{2}{x-3}>1\)
\(\Leftrightarrow\frac{2}{x-3}>0\)
\(\Leftrightarrow x-3>0\)
\(\Leftrightarrow x>3\)
a) Ta có: \(x^3-6x^2+11x-6=0\)
\(\Leftrightarrow x^3-x^2-5x^2+5x+6x-6=0\)
\(\Leftrightarrow x^2\left(x-1\right)-5x\left(x-1\right)+6\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-5x+6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\x-2=0\\x-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\x=2\\x=3\end{cases}}\)
Vậy nghiệm của phương trình là {1;2;3}
Mình đang bận. Câu 2 tí nữa giải quyết sau...
Bài 1:
1.
\((x^2-6x)^2-2(x-3)^2+2=0\)
\(\Leftrightarrow (x^2-6x)^2-2(x^2-6x+9)+2=0\)
\(\Leftrightarrow (x^2-6x)^2-2(x^2-6x)-16=0\)
Đặt $x^2-6x=a$ thì pt trở thành:
$a^2-2a-16=0$
$\Leftrightarrow a=1\pm \sqrt{17}$
Nếu $a=1+\sqrt{17}$
$\Leftrightarrow x^2-6x=1+\sqrt{17}$
$\Leftrightarrow (x-3)^2=10+\sqrt{17}$
$\Rightarrow x=3\pm \sqrt{10+\sqrt{17}}$
Nếu $a=1-\sqrt{17}$
$\Rightarrow x=3\pm \sqrt{10-\sqrt{17}}$
Vậy.........
2.
$x^4-2x^3+x=2$
$\Leftrightarrow x^3(x-2)+(x-2)=0$
$\Leftrightarrow (x-2)(x^3+1)=0$
$\Leftrightarrow (x-2)(x+1)(x^2-x+1)=0$
Thấy rằng $x^2-x+1=(x-\frac{1}{2})^2+\frac{3}{4}>0$ nên $(x-2)(x+1)=0$
$\Rightarrow x=2$ hoặc $x=-1$
Vậy.......
Bài 2:
1.
ĐKXĐ: $x\neq 1$. Ta có:
\(x^2+(\frac{x}{x-1})^2=8\)
\(\Leftrightarrow x^2+(\frac{x}{x-1})^2+\frac{2x^2}{x-1}=8+\frac{2x^2}{x-1}\)
\(\Leftrightarrow (x+\frac{x}{x-1})^2=8+\frac{2x^2}{x-1}\)
\(\Leftrightarrow (\frac{x^2}{x-1})^2=8+\frac{2x^2}{x-1}\)
Đặt $\frac{x^2}{x-1}=a$ thì pt trở thành:
$a^2=8+2a$
$\Leftrightarrow (a-4)(a+2)=0$
Nếu $a=4\Leftrightarrow \frac{x^2}{x-1}=4$
$\Rightarrow x^2-4x+4=0\Leftrightarrow (x-2)^2=0\Rightarrow x=2$ (tm)
Nếu $a=-2\Leftrightarrow \frac{x^2}{x-1}=-2$
$x^2+2x-2=0\Rightarrow x=-1\pm \sqrt{3}$ (tm)
Vậy........
2. ĐKXĐ: $x\neq 0; 2$
$(\frac{x-1}{x})^2+(\frac{x-1}{x-2})^2=\frac{40}{49}$
$\Leftrightarrow (\frac{x-1}{x}+\frac{x-1}{x-2})^2-\frac{2(x-1)^2}{x(x-2)}=\frac{40}{49}$
$\Leftrightarrow 4\left[\frac{(x-1)^2}{x(x-2)}\right]^2-\frac{2(x-1)^2}{x(x-2)}=\frac{40}{49}$
Đặt $\frac{(x-1)^2}{x(x-2)}=a$ thì pt trở thành:
$4a^2-2a=\frac{40}{49}$
$\Rightarrow 2a^2-a-\frac{20}{49}=0$
$\Rightarrow a=\frac{7\pm \sqrt{209}}{28}$
$\Leftrightarrow 1+\frac{1}{x(x-2)}=\frac{7\pm \sqrt{209}}{28}$
$\Leftrightarrow \frac{1}{x(x-2)}=\frac{-21\pm \sqrt{209}}{28}$
$\Rightarrow x(x-2)=\frac{28}{-21\pm \sqrt{209}}$
$\Rightarrow (x-1)^2=\frac{7\pm \sqrt{209}}{-21\pm \sqrt{209}}$.
Dễ thấy $\frac{7+\sqrt{209}}{-21+\sqrt{209}}< 0$ nên vô lý
Do đó $(x-1)^2=\frac{7-\sqrt{209}}{-21-\sqrt{209}}$
$\Leftrightarrow x=1\pm \sqrt{\frac{7-\sqrt{209}}{-21-\sqrt{209}}}$
Vậy........