
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


=140(x-1)+2-42x(7x-1)=48(2x+1)-5
=140x-140+2-294x^2+42x=96x+48-5
=294x^2-140x+42x-96x+140+2-85+5=0
=294x^2-86x+(-78x)=0
Ta có a=294;b=(-86);c=(-78)
đen ta =(-86)2-4x294x(-78)=99124
Phương trình có 2 nghiệm phân biệt
đến đây bạn tự giải tiếp nhé

\(2+\frac{2x^2-8x}{2x^2+8x}+\frac{2x^2+7x+23}{2x^2+7x-4}=\frac{2x+5}{2x-1}\)
\(\Leftrightarrow2+\frac{2x\left(x-4\right)}{2x\left(x+4\right)}+\frac{2x^2+7x+23}{\left(2x-1\right)\left(x+4\right)}=\frac{2x+5}{2x-1}\)
\(\Leftrightarrow2+\frac{x-4}{x+4}+\frac{2x^2+7x+23}{\left(2x-1\right)\left(x+4\right)}-\frac{2x+5}{2x-1}=0\)
\(\Leftrightarrow\frac{2\left(x+4\right)\left(2x-1\right)}{\left(x+4\right)\left(2x-1\right)}+\frac{\left(x-4\right)\left(2x-1\right)}{\left(x+4\right)\left(2x-1\right)}+\frac{2x^2+7x+23}{\left(2x-1\right)\left(x+4\right)}-\frac{\left(2x+5\right)\left(x+4\right)}{\left(2x-1\right)\left(x+4\right)}=0\)
\(\Leftrightarrow\frac{2\left(x+4\right)\left(2x-1\right)+\left(x-4\right)\left(2x-1\right)+2x^2+7x+23-\left(2x+5\right)\left(x+4\right)}{\left(x+4\right)\left(2x-1\right)}=0\)
\(\Leftrightarrow2\left(x+4\right)\left(2x-1\right)+\left(x-4\right)\left(2x-1\right)+2x^2+7x+23-\left(2x+5\right)\left(x+4\right)=0\)
\(\Leftrightarrow2\left(2x^2+7x-4\right)+\left(2x^2-9x+4\right)+2x^2+7x+23-\left(2x^2+13x+20\right)=0\)
\(\Leftrightarrow4x^2+14x-8+2x^2-9x+4+2x^2+7x+23-2x^2-13x-20=0\)
\(\Leftrightarrow6x^2+7x-1=0\)
\(\Leftrightarrow6\left(x^2+2.\frac{7}{12}.x+\frac{49}{144}\right)-\frac{193}{144}=0\)
\(\Leftrightarrow\left(x+\frac{7}{12}\right)^2=\frac{\frac{193}{144}}{6}=\frac{193}{864}\)
Bạn tự làm nốt.

\(1a,\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)
\(\Leftrightarrow\frac{3\left(2x+1\right)^2}{15}-\frac{5\left(x-1\right)^2}{15}=\frac{7x^2-14x-5}{15}\)
\(\Leftrightarrow\frac{12x^2+12x+3}{15}-\frac{5x^2-10x+5}{15}=\frac{7x^2-14x-5}{15}\)
\(\Leftrightarrow12x^2+12x+3-5x^2+10x-5=7x^2-14x-5\)
\(\Leftrightarrow36x=-3\)
\(x=-\frac{1}{12}\)
Vậy ................
\(b,\frac{7x-1}{6}+2x=\frac{16-x}{5}\)
\(\Leftrightarrow\frac{5\left(7x-1\right)}{30}+\frac{30.2x}{30}=\frac{6\left(16-x\right)}{30}\)
\(\Leftrightarrow35x-5+60x=96-6x\)
\(\Leftrightarrow101x=101\)
\(\Leftrightarrow x=1\)
Vậy ....................

1. \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)
\(\Leftrightarrow5\left(7x-1\right)+60x=6\left(16-x\right)\)
\(\Leftrightarrow35x-5+60x=96-6x\)
\(\Leftrightarrow95x-5=96-6x\)
\(\Leftrightarrow95x+6x=96+5\)
\(\Leftrightarrow101x=101\)
\(\Leftrightarrow x=1\)
2. \(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)
\(\Leftrightarrow3\left(10x+3\right)=36+4\left(6+8x\right)\)
\(\Leftrightarrow30x+9=36+24+32x\)
\(\Leftrightarrow30x+9=32x+60\)
\(\Leftrightarrow30x-32x=60-9\)
\(\Leftrightarrow-2x=51\)
\(\Leftrightarrow x=-\frac{51}{2}\)
3. \(\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{2}+\frac{x+3}{4}\)
\(\Leftrightarrow8x-3-2\left(3x-2\right)=2\left(2x-1\right)+x+3\)
\(\Leftrightarrow8x-3-6x+4=4x-2+x+3\)
\(\Leftrightarrow2x+1=5x+1\)
\(\Leftrightarrow2x=5x\)
\(\Leftrightarrow x=0\)
4) \(\frac{3\left(3-x\right)}{8}+\frac{2\left(5-x\right)}{3}=\frac{1-x}{2}-2\)
=> \(\frac{9-3x}{8}+\frac{10-2x}{3}=\frac{1-x}{2}-\frac{2}{1}\)
=> \(\frac{3\left(9-3x\right)}{24}+\frac{8\left(10-2x\right)}{24}=\frac{12\left(1-x\right)}{24}-\frac{48}{24}\)
=> \(\frac{27-9x}{24}+\frac{80-16x}{24}=\frac{12-12x}{24}-\frac{48}{24}\)
=> \(\frac{27-9x+80-16x}{24}=\frac{12-12x-48}{24}\)
=> 27 - 9x + 80 - 16x = 12 - 12x - 48
=> 27 - 9x + 80 - 16x - 12 + 12x + 48 = 0
=> (27 + 80 - 12 + 48) + (-9x - 16x + 12x) = 0
=> 143 - 13x = 0
=> 13x = 143
=> x = 11
5) \(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)
=> \(\frac{2x-6}{7}+\frac{x-5}{3}-\frac{13x+4}{21}=0\)
=> \(\frac{3\left(2x-6\right)}{21}+\frac{7\left(x-5\right)}{21}-\frac{13x+4}{21}=0\)
=> \(\frac{6x-18}{21}+\frac{7x-35}{21}-\frac{13x+4}{21}=0\)
=> \(\frac{6x-18+7x-35-13x-4}{21}=0\)
=> 6x - 18 + 7x - 35 - 13x - 4 = 0
=> (6x + 7x - 13x) + (-18 - 35 - 4) = 0
=> -57 = 0(vô nghiệm)
6) \(\frac{6x+5}{2}-\left(2x+\frac{2x+1}{2}\right)=\frac{10x+3}{4}\)
=> \(\frac{6x+5}{2}-\frac{10x+3}{4}=2x+\frac{2x+1}{2}\)
=> \(\frac{2\left(6x+5\right)}{4}-\frac{10x+3}{4}=\frac{8x}{4}+\frac{2\left(2x+1\right)}{4}\)
=> \(\frac{12x+10}{4}-\frac{10x+3}{4}=\frac{8x}{4}+\frac{4x+2}{4}\)
=> \(\frac{12x+10-\left(10x+3\right)}{4}=\frac{8x+4x+2}{4}\)
=> \(\frac{12x+10-10x-3}{4}=\frac{12x+2}{4}\)
=> \(12x+10-10x-3=12x+2\)
=> \(2x+10-3=12x+2\)
=> 2x + 10 - 3 - 12x - 2 = 0
=> (2x - 12x) + (10 - 3 - 2) = 0
=> -10x + 5 = 0
=> -10x = -5
=> x = 1/2
7) \(\frac{2x-1}{5}-\frac{x-2}{3}-\frac{x+7}{15}=0\)
=> \(\frac{3\left(2x-1\right)}{15}-\frac{5\left(x-2\right)}{15}-\frac{x+7}{15}=0\)
=> \(\frac{6x-3}{15}-\frac{5x-10}{15}-\frac{x+7}{15}=0\)
=> \(\frac{6x-3-\left(5x-10\right)-\left(x+7\right)}{15}=0\)
=> 6x - 3 - 5x + 10 - x - 7 = 0
=> (6x - 5x - x) + (-3 + 10 - 7) = 0
=> 0x + 0 = 0
=> 0x = 0
=> x tùy ý
Bài 8 tự làm nhé

\(\frac{x+4}{\left(x-2\right)\left(2x-1\right)}+\frac{x+1}{\left(x-3\right)\left(2x-1\right)}=\frac{2x+5}{\left(x-3\right)\left(2x-1\right)}\)
\(\frac{\left(x-3\right)\left(x+4\right)}{\left(x-2\right)\left(2x-1\right)\left(x-3\right)}+\frac{\left(x+1\right)\left(x-2\right)}{\left(x-3\right)\left(2x-1\right)\left(x-2\right)}=\frac{\left(2x+5\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1\right)}\)
\(\Rightarrow x^2+x-12+x^2-x-2=2x^2+x-10\Leftrightarrow x=-4\)
\(\frac{x+4}{2x^2-5x+2}+\frac{x+1}{2x^2-7x+3}=\frac{2x+5}{2x^2-7x+3}\)
\(\Rightarrow\frac{x+4}{2x^2-5x+2}=\frac{2x-5}{2x^2-7x+3}-\frac{x+1}{2x^2-7x+3}\)
\(\Rightarrow\frac{x+4}{2x^2-5x+2}=\frac{x+4}{2x^2-7x+3}\)
TH1:\(x+4\ne0\)
\(\Rightarrow2x^2-5x+2=2x^2-7x+3\)
\(\Rightarrow-5x+2=-7x+3\)
\(\Rightarrow2x=1\)
\(\Rightarrow x=\frac{1}{2}\)
TH2:\(x+4=0\)
\(\Rightarrow x=-4\)

\(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{16}{x^2-1}\)
\(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{16}{x^2-1}\)
\(\Rightarrow\left(x+1\right)^2-\left(x-1\right)^2=16\)
\(\Rightarrow\left(x+1-x+1\right)\left(x+1+x-1\right)=16\)
\(\Rightarrow2\left(2x\right)=16\)
\(\Rightarrow4x=16\)
\(\Rightarrow x=4\)
vậy \(x=4\)
\(\frac{6x+1}{x^2-7x+10}+\frac{5}{x-2}=\frac{3}{x-5}\)
\(\frac{6x+1}{\left(x-2\right)\left(x-5\right)}+\frac{5\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}=\frac{3\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}\)
\(\Rightarrow6x+1+5x-5=3x-6\)
\(\Rightarrow11x-3x=-6+4\)
\(\Rightarrow8x=-2\)
\(\Rightarrow x=\frac{-1}{4}\)
3) \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
\(\frac{x^2+x+1}{x^3-1}+\frac{\left(2x^2-5\right)}{x^3-1}=\frac{4\left(x-1\right)}{x^3-1}\)
\(\Rightarrow x^2+x+1+2x^2-5=4x-4\)
\(\Rightarrow3x^2-3x=-4+4\)
\(\Rightarrow3x\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

còn đây là câu b
\(\frac{3x-2-30}{6}=\frac{3-2x-14}{4}\)
\(\Leftrightarrow\frac{3x-32}{6}-\frac{-11-2x}{4}=0\)
\(\Leftrightarrow\frac{6x-64+33+6x}{12}\)
\(\Leftrightarrow12x=31\)
\(\Leftrightarrow x=\frac{31}{12}\)
........
<=>\(\frac{5\left(7x-1\right)}{5.6}+\frac{2x.30}{1.30}=\frac{6\left(16-x\right)}{6.5}\)
<=>\(35x-5+60x=96-6x\)
<=>\(35x+60x+6x=96+5\)
<=>\(101x=101\)
<=>\(x=1\)
\(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)
\(\frac{35x-5}{30}+\frac{60x}{30}-\frac{96-6x}{30}=0\)
\(\frac{35x+60x+6x-5-96}{30}=0\)
\(\frac{95x-101}{30}=0\)
\(95x-101=0\)
\(95x=101\)
\(x=\frac{101}{95}\)