Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{16}{x^2-1}\)
\(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{16}{x^2-1}\)
\(\Rightarrow\left(x+1\right)^2-\left(x-1\right)^2=16\)
\(\Rightarrow\left(x+1-x+1\right)\left(x+1+x-1\right)=16\)
\(\Rightarrow2\left(2x\right)=16\)
\(\Rightarrow4x=16\)
\(\Rightarrow x=4\)
vậy \(x=4\)
\(\frac{6x+1}{x^2-7x+10}+\frac{5}{x-2}=\frac{3}{x-5}\)
\(\frac{6x+1}{\left(x-2\right)\left(x-5\right)}+\frac{5\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}=\frac{3\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}\)
\(\Rightarrow6x+1+5x-5=3x-6\)
\(\Rightarrow11x-3x=-6+4\)
\(\Rightarrow8x=-2\)
\(\Rightarrow x=\frac{-1}{4}\)
3) \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
\(\frac{x^2+x+1}{x^3-1}+\frac{\left(2x^2-5\right)}{x^3-1}=\frac{4\left(x-1\right)}{x^3-1}\)
\(\Rightarrow x^2+x+1+2x^2-5=4x-4\)
\(\Rightarrow3x^2-3x=-4+4\)
\(\Rightarrow3x\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gợi ý :
Bài 1 : Cộng thêm 1 vào 3 phân thức đầu, trừ cho 3 ở phân thức thứ 4, có nhân tử chung là (x+2020)
Bài 2 : Trừ mỗi phân thức cho 1, chuyển vế và có nhân tử chung là (x-2021)
Bài 3 : Phân thức thứ nhất trừ đi 1, phân thức hai trù đi 2, phân thức ba trừ đi 3, phân thức bốn trừ cho 4, phân thức 5 trừ cho 5. Có nhân tử chung là (x-100)
bài 3
\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15.\)
=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=0\)
=>\(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)
=>\(\left(x-100\right).\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)
=>(x-100)=0 do \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)
=> x=100
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(\frac{6x+1}{x^2+7x+10}+\frac{5}{x-2}=\frac{3}{x-5}\)
\(11x^3-31x^2-72x-240=3\left(x+2\right)\left(x+5\right)\left(x-2\right)\)
\(11x^3-31x^2-72x-240-3\left(x+2\right)\left(x+5\right)\left(x-2\right)=0\)
\(8x^3-46x^2-60x-180=0\)
=> vô nghiệm
b) \(\frac{2}{x^2-4}-\frac{x-1}{x\left(x-2\right)}+\frac{x-4}{x\left(x+2\right)}=0\left(x\ne0;x\ne\pm2\right)\)
\(\Leftrightarrow\frac{2x}{\left(x-2\right)\left(x+2\right)x}-\frac{\left(x+2\right)\left(x-1\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{\left(x+4\right)\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{2x}{x\left(x-2\right)\left(x+2\right)}-\frac{x^2+x-2}{x\left(x-2\right)\left(x+2\right)}+\frac{x^2+2x-8}{x\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{2x-x^2-x+2+x^2+2x-8}{x\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{3x-6}{x\left(x-2\right)\left(x+2\right)}=0\)
=> 3x-6=0
<=> x=2 (ktm)
Vậy pt vô nghiệm